6 research outputs found

    A systematic survey of floral nectaries

    No full text
    The construction of classifications, as well as the understanding of biological diversity, depends upon a careful comparison of attributes of the organisms studied (Stuessy, 1990). It is widely known that data from diverse sources showing differences from taxon to taxon are of systematic significance. Dur-ing the 20th century, systematists have emphasized that their discipline involves a synthesis of all knowledge (Stevens, 1994) or, in other words, the variation of as many relevant characters as possible should be incorporated into the natural system to be constructed. The extent to which particular characters are constant or labile will determine their usefulness to syste-matics. In general, more conservative characters will be valuable in defining families and orders, whereas more labile characters may be useful at the ge-neric and specific levels (Webb, 1984). There is no doubt that floral characters are among the most used in the classification of flowering plants. At the same time, they constitute essential features in diagnostic keys to taxa in both taxonomic treatments and Floras (Cronquist, 1981, 1988).Fil: Bernardello, Gabriel Luis Mario. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto Multidisciplinario de Biología Vegetal. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Instituto Multidisciplinario de Biología Vegetal; Argentin

    Observation of Gravitational Waves from the Coalescence of a 2.54.5 M2.5-4.5~M_\odot Compact Object and a Neutron Star

    No full text
    International audienceWe report the observation of a coalescing compact binary with component masses 2.54.5 M2.5-4.5~M_\odot and 1.22.0 M1.2-2.0~M_\odot (all measurements quoted at the 90% credible level). The gravitational-wave signal GW230529_181500 was observed during the fourth observing run of the LIGO-Virgo-KAGRA detector network on 2023 May 29 by the LIGO Livingston Observatory. The primary component of the source has a mass less than 5 M5~M_\odot at 99% credibility. We cannot definitively determine from gravitational-wave data alone whether either component of the source is a neutron star or a black hole. However, given existing estimates of the maximum neutron star mass, we find the most probable interpretation of the source to be the coalescence of a neutron star with a black hole that has a mass between the most massive neutron stars and the least massive black holes observed in the Galaxy. We estimate a merger rate density of 5547+127 Gpc3yr155^{+127}_{-47}~\text{Gpc}^{-3}\,\text{yr}^{-1} for compact binary coalescences with properties similar to the source of GW230529_181500; assuming that the source is a neutron star-black hole merger, GW230529_181500-like sources constitute about 60% of the total merger rate inferred for neutron star-black hole coalescences. The discovery of this system implies an increase in the expected rate of neutron star-black hole mergers with electromagnetic counterparts and provides further evidence for compact objects existing within the purported lower mass gap

    CMS physics technical design report: Addendum on high density QCD with heavy ions

    Get PDF
    This report presents the capabilities of the CMS experiment to explore the rich heavy-ion physics programme offered by the CERN Large Hadron Collider (LHC). The collisions of lead nuclei at energies ,will probe quark and gluon matter at unprecedented values of energy density. The prime goal of this research is to study the fundamental theory of the strong interaction - Quantum Chromodynamics (QCD) - in extreme conditions of temperature, density and parton momentum fraction (low-x). This report covers in detail the potential of CMS to carry out a series of representative Pb-Pb measurements. These include "bulk" observables, (charged hadron multiplicity, low pT inclusive hadron identified spectra and elliptic flow) which provide information on the collective properties of the system, as well as perturbative probes such as quarkonia, heavy-quarks, jets and high pT hadrons which yield "tomographic" information of the hottest and densest phases of the reaction.0info:eu-repo/semantics/publishe
    corecore