1,404 research outputs found
Рифма в рамках средневекового крымскотатарского силлабического стиха
В предложенной статье представлен теоретический материал, который
раскрывает сущность и особенности рифмы, подкреплённый необходимым материалом из крымскотатарской литературы.У запропонованій статті представлений теоретичний матеріал, що розкриває сутність і особливості рими, підкріплений необхідним матеріалом із кримськотатарської літератури.In offered article the theoretical material which opens essence and features of
the rhyme, supported by a necessary material from crimean tatars literatures is
submitted
Scattering mechanism in a step-modulated subwavelength metal slit: a multi-mode multi-reflection analysis
In this paper, the scattering/transmission inside a step-modulated
subwavelength metal slit is investigated in detail. We firstly investigate the
scattering in a junction structure by two types of structural changes. The
variation of transmission and reflection coefficients depending on structural
parameters are analyzed. Then a multi-mode multi-reflection model based on ray
theory is proposed to illustrate the transmission in the step-modulated slit
explicitly. The key parts of this model are the multi-mode excitation and the
superposition procedure of the scatterings from all possible modes, which
represent the interference and energy transfer happened at interfaces. The
method we use is an improved modal expansion method (MEM), which is a more
practical and efficient version compared with the previous one [Opt. Express
19, 10073 (2011)]. In addition, some commonly used methods, FDTD, scattering
matrix method, and improved characteristic impedance method, are compared with
MEM to highlight the preciseness of these methods.Comment: 25 pages, 9 figure
Molecular conservation of estrogen-response associated with cell cycle regulation, hormonal carcinogenesis and cancer in zebrafish and human cancer cell lines
BMC Medical Genomics4
A Statistical Study on the Morphology of Rays and Dynamics of Blobs in the Wake of Coronal Mass Ejections
In this paper, with a survey through the Large Angle and Spectrometric
Coronagraph (LASCO) data from 1996 to 2009, we present 11 events with plasma
blobs flowing outwards sequentially along a bright coronal ray in the wake of a
coronal mass ejection. The ray is believed to be associated with the current
sheet structure that formed as a result of solar eruption, and the blobs are
products of magnetic reconnection occurring along the current sheet. The ray
morphology and blob dynamics are investigated statistically. It is found that
the apparent angular widths of the rays at a fixed time vary in a range of
2.1-6.6 (2.0-4.4) degrees with an average of 3.5 (2.9) degrees at 3 (4) Rs,
respectively, and the observed durations of the events vary from 12 h to a few
days with an average of 27 h. It is also found, based on the analysis of blob
motions, that 58% (26) of the blobs were accelerated, 20% (9) were decelerated,
and 22% (10) moved with a nearly-constant speed. Comparing the dynamics of our
blobs and those that are observed above the tip of a helmet streamer, we find
that the speeds and accelerations of the blobs in these two cases differ
significantly. It is suggested that these differences of the blob dynamics stem
from the associated magnetic reconnection involving different magnetic field
configurations and triggering processes.Comment: 12 pages, 6 figures, accepted by Solar Physic
Ginzburg-Landau vortex dynamics with pinning and strong applied currents
We study a mixed heat and Schr\"odinger Ginzburg-Landau evolution equation on
a bounded two-dimensional domain with an electric current applied on the
boundary and a pinning potential term. This is meant to model a superconductor
subjected to an applied electric current and electromagnetic field and
containing impurities. Such a current is expected to set the vortices in
motion, while the pinning term drives them toward minima of the pinning
potential and "pins" them there. We derive the limiting dynamics of a finite
number of vortices in the limit of a large Ginzburg-Landau parameter, or \ep
\to 0, when the intensity of the electric current and applied magnetic field
on the boundary scale like \lep. We show that the limiting velocity of the
vortices is the sum of a Lorentz force, due to the current, and a pinning
force. We state an analogous result for a model Ginzburg-Landau equation
without magnetic field but with forcing terms. Our proof provides a unified
approach to various proofs of dynamics of Ginzburg-Landau vortices.Comment: 48 pages; v2: minor errors and typos correcte
Generation of dynamic pressure pulses downstream of the bow shock by variations in the interplanetary magnetic field orientation
One-dimensional resistive MHD and hybrid simulations are carried out to study the manner by which variations of the interplanetary magnetic field (IMF) direction generate dynamic pressure pulses in the magnetosheath. The reaction of the magnetosheath to the temporal IMF variation is modeled as the interaction between the bow shock (BS) and an interplanetary rotational discontinuity (RD), an Alfven wave pulse (AW), or an Alfven wave train. The resistive MHD simulation indicates that the arrival of an RD produces two time-dependent intermediate shocks (TDISs) and two slow shocks downstream of the bow shock, which propagate through the magnetosheath toward the Earth's magnetopause. An enhancement of plasma density is present throughout the TDISs and slow shocks. A plasma dynamic pressure pulse is formed in this region. In the hybrid simulation, the two TDISs are replaced by rotational discontinuities. For a bow shock with a shock normal angle Theta(Bn) > 45 degrees, the pulse in the dynamic pressure rho V-2 causes the the total pressure (P + B-2/2 mu(0) + rho V-2) in the magnetosheath to increases by about 0-100% of the background value. The strength of the pressure pulse increases with the field rotation angle across the incident rotational discontinuity, while it decreases with the Mach number or upstream plasma beta of the bow shock. The pressure pulse propagates toward the magnetopause with nearly a constant amplitude. On the other hand, the BS/AW interaction leads to the generation of Alfven waves downstream of the bow shock, and large-amplitude dynamic pressure pulses are generated in the downstream Alfven wave. Pressure pulses impinging on the magnetopause may produce magnetic impulse events (MIEs) observed in the high-latitude ionosphere.PublishedYe
Urban Renaissance
This conceptual thesis represents a new possibility of urban regeneration in Taiwan. It aims to provide a consultative value to the historically city—Tainan—for its policy maker. The research seeks to situate the concept of creative cities within the context of culture-led urban planning. The theoretical framework outlines the fundamental urban theories associated with culture and creativity, which illustrates the correlations among creative economy, creative industries, creative cluster and creative class. By reviewing different international case studies of culture-led urban regeneration, the final remark concludes with a vision: How to create a renaissance for the oldest city of Taiwan—Tainan—a creative city with its unique characteristics
Fuzzy-enhanced adaptive control for flexible drive system with friction using genetic algorithms
When a mechatronic system is in slow speed motion, serious effect of nonlinear friction plays a key role in its control design. In this paper, a stable adaptive control for drive systems including transmission flexibility and friction, based on the Lyapunov stability theory, is first proposed. For ease of design, the friction is fictitiously assumed as an unknown disturbance in the derivation of the adaptive control law Genetic algorithms are then suggested for learning the structure and parameters of the fuzzy-enhancing strategy for the adaptive control to improve system's transient performance and robustness with respect to uncertainty. The integrated fuzzy-enhanced adaptive control is well tested via computer simulations using the new complete dynamic friction model recently suggested by Canudas de Wit et al. for modeling the real friction phenomena. Much lower critical velocity of a flexible drive system that determines system's low-speed performance bound can be obtained using the proposed hybrid control strategy
Measurement of the Bottom contribution to non-photonic electron production in collisions at =200 GeV
The contribution of meson decays to non-photonic electrons, which are
mainly produced by the semi-leptonic decays of heavy flavor mesons, in
collisions at 200 GeV has been measured using azimuthal
correlations between non-photonic electrons and hadrons. The extracted
decay contribution is approximately 50% at a transverse momentum of GeV/. These measurements constrain the nuclear modification factor for
electrons from and meson decays. The result indicates that meson
production in heavy ion collisions is also suppressed at high .Comment: 6 pages, 4 figures, accepted by PR
On non-local variational problems with lack of compactness related to non-linear optics
We give a simple proof of existence of solutions of the dispersion manage-
ment and diffraction management equations for zero average dispersion,
respectively diffraction. These solutions are found as maximizers of non-linear
and non-local vari- ational problems which are invariant under a large
non-compact group. Our proof of existence of maximizer is rather direct and
avoids the use of Lions' concentration compactness argument or Ekeland's
variational principle.Comment: 30 page
- …
