44 research outputs found

    Neutron charge form factor at large q2q^2

    Full text link
    The neutron charge form factor GEn(q)G_{En}(q) is determined from an analysis of the deuteron quadrupole form factor FC2F_{C2} data. Recent calculations, based on a variety of different model interactions and currents, indicate that the contributions associated with the uncertain two-body operators of shorter range are relatively small for FC2F_{C2}, even at large momentum transfer qq. Hence, GEn(q)G_{En}(q) can be extracted from FC2F_{C2} at large q2q^2 without undue systematic uncertainties from theory.Comment: 8 pages, 3 figure

    Perturbative QCD and factorization of coherent pion photoproduction on the deuteron

    Full text link
    We analyze the predictions of perturbative QCD for pion photoproduction on the deuteron, gamma D -> pi^0 D, at large momentum transfer using the reduced amplitude formalism. The cluster decomposition of the deuteron wave function at small binding only allows the nuclear coherent process to proceed if each nucleon absorbs an equal fraction of the overall momentum transfer. Furthermore, each nucleon must scatter while remaining close to its mass shell. Thus the nuclear photoproduction amplitude, M_{gamma D -> pi^0 D}(u,t), factorizes as a product of three factors: (1) the nucleon photoproduction amplitude, M_{gamma N_1 -> pi^0 N_1}(u/4,t/4), at half of the overall momentum transfer, (2) a nucleon form factor, F_{N_2}(t/4), at half the overall momentum transfer, and (3) the reduced deuteron form factor, f_d(t), which according to perturbative QCD, has the same monopole falloff as a meson form factor. A comparison with the recent JLAB data for gamma D -> pi^0 D of Meekins et al. [Phys. Rev. C 60, 052201 (1999)] and the available gamma p -> pi^0 p data shows good agreement between the perturbative QCD prediction and experiment over a large range of momentum transfers and center of mass angles. The reduced amplitude prediction is consistent with the constituent counting rule, p^11_T M_{gamma D -> pi^0 D} -> F(theta_cm), at large momentum transfer. This is found to be consistent with measurements for photon lab energies E_gamma > 3 GeV at theta_cm=90 degrees and \elab > 10 GeV at 136 degrees.Comment: RevTeX 3.1, 17 pages, 6 figures; v2: incorporates minor changes as version accepted by Phys Rev

    Virtual Compton Scattering and Neutral Pion Electroproduction in the Resonance Region up to the Deep Inelastic Region at Backward Angles

    Full text link
    We have made the first measurements of the virtual Compton scattering (VCS) process via the H(e,ep)γ(e,e'p)\gamma exclusive reaction in the nucleon resonance region, at backward angles. Results are presented for the WW-dependence at fixed Q2=1Q^2=1 GeV2^2, and for the Q2Q^2-dependence at fixed WW near 1.5 GeV. The VCS data show resonant structures in the first and second resonance regions. The observed Q2Q^2-dependence is smooth. The measured ratio of H(e,ep)γ(e,e'p)\gamma to H(e,ep)π0(e,e'p)\pi^0 cross sections emphasizes the different sensitivity of these two reactions to the various nucleon resonances. Finally, when compared to Real Compton Scattering (RCS) at high energy and large angles, our VCS data at the highest WW (1.8-1.9 GeV) show a striking Q2Q^2- independence, which may suggest a transition to a perturbative scattering mechanism at the quark level.Comment: 20 pages, 8 figures. To appear in Phys.Rev.

    Azimuthal anisotropies of charged particles with high transverse momentum in Pb+Pb collisions at √sNN=5.02 TeV with the ATLAS detector

    Get PDF
    A measurement is presented of elliptic (v2) and triangular (v3) azimuthal anisotropy coefficients for charged particles produced in Pb+Pb collisions at √sNN = 5.02 TeV using a dataset corresponding to an integrated luminosity of 0.44 nb−1 collected with the ATLAS detector at the LHC in 2018. The values of v2 and v3 are measured for charged particles over a wide range of transverse momentum (pT), 1–400 GeV, and Pb+Pb collision centrality, 0–60%, using the scalar-product and multiparticle cumulant methods. These methods are sensitive to event-by-event fluctuations and nonflow effects in the measurements of azimuthal anisotropies. Positive values of v2 are observed up to a pT of approximately 100 GeV from both methods across all centrality intervals. Positive values of v3 are observed up to approximately 25 GeV using both methods, though the application of the three-subevent technique to the multiparticle cumulant method leads to significant changes at the highest pT. At high pT (pT 10 GeV), charged particles are dominantly from jet fragmentation. These jets, and hence the measurements presented here, are sensitive to the path-length dependence of parton energy loss in the quark-gluon plasma produced in Pb+Pb collisions

    Search for squarks and gluinos in pp collisions at √s = 13 TeV and 13.6 TeV in events with τ-leptons, jets and missing transverse momentum using the ATLAS detector

    Get PDF

    Measurement of high-mass tt l+l- production and lepton flavour universality-inspired effective field theory interpretations at √s = 13TEV with the ATLAS detector

    Get PDF

    The environmental impact, carbon emissions and sustainability of computing in the ATLAS experiment

    Get PDF
    ATLAS, a general-purpose experiment at the Large Hadron Collider (LHC), makes use of a large internationally-distributed computing infrastructure, including over 106 TB of managed data on disk and tape and almost one million simultaneously running CPU cores. Upgrades for the High-Luminosity LHC (HL-LHC) will increase the required computing resources by a factor of 3–4 by the beginning of the 2030s, and by an order of magnitude before the conclusion of data taking at the beginning of the 2040s. These resources are spread over around 100 computing sites worldwide. Efforts are underway within the experiment to evaluate and mitigate various aspects of the environmental impact of the sites, with the additional long-term goal of making recommendations to the sites that will significantly reduce the total expected environmental impact in the HL-LHC era. These efforts take several forms: building awareness in the experiment community, adjusting aspects of the computing policy, and modifications of data center configurations, either in ways that take advantage of particular features of ATLAS workloads or in generic ways that reduce the environmental impact of the computing resources. This paper describes the ongoing investigations and approaches that have already provided useful and actionable outcomes

    A precise measurement of the jet energy scale derived from single-particle measurements and in situ techniques in proton–proton collisions at √s= 13 TeV with the ATLAS detector

    Get PDF
    The jet energy calibration and its uncertainties are derived from measurements of the calorimeter response to single particles in both data and Monte Carlo simulation using proton–proton collisions at √s = 13 TeV collected with the ATLAS detector during Run 2 at the Large Hadron Collider. The jet calibration uncertainty for anti-kT jets with a jet radius parameter of Rjet = 0.4 and in the central jet rapidity region is about 2.5% for transverse momenta (pT) of 20 GeV, about 0.5% for pT = 300 GeV and 0.7% for pT = 4 TeV. Excellent agreement is found with earlier determinations obtained from pT-balance based in situ methods (Z/γ +jets). The combination of these two independent methods results in the most precise jet energy measurement achieved so far with the ATLAS detector with a relative uncertainty of 0.3% at pT = 300 GeV and 0.6% at 4 TeV. The jet energy calibration is also derived with the single-particle calorimeter response measurements separately for quark- and gluon-induced jets and furthermore for jets with Rjet varying from 0.2 to 1.0 retaining the correlations between these measurements. Differences between inclusive jets and jets from boosted top-quark decays, with and without grooming the soft jet constituents, are also studied

    Search for a new pseudoscalar decaying into a pair of bottom and antibottom quarks in top-associated production in √s = 13 TeV proton–proton collisions with the ATLAS detector

    Get PDF
    A search for a pseudoscalar a produced in association with a top-quark pair, or in association with a single top quark plus a W boson, with the pseudoscalar decaying into b-quarks (a → bb¯), is performed using the full Run 2 data sample using a dileptonic decay mode signature. The search covers pseudoscalar boson masses between 12 and 100 GeV and involves both the kinematic regime where the decay products of the pseudoscalar are reconstructed as two standard b-tagged small-radius jets, or merged into a largeradius jet due to its Lorentz boost. No significant excess relative to expectations is observed. Assuming a branching ratio BR(a → bb¯) = 100%, the range of pseudoscalar masses between 50 and 80 GeV is excluded at 95% confidence level for a coupling of the pseudoscalar to the top quark of 0.5, while a coupling of 1.0 is excluded at 95% confidence level for the masses considered, with the coupling defined as the strength modifier of the Standard Model Yukawa coupling

    Deep generative models for fast photon shower simulation in ATLAS

    Get PDF
    The need for large-scale production of highly accurate simulated event samples for the extensive physics programme of the ATLAS experiment at the Large Hadron Collider motivates the development of new simulation techniques. Building on the recent success of deep learning algorithms, variational autoencoders and generative adversarial networks are investigated for modelling the response of the central region of the ATLAS electromagnetic calorimeter to photons of various energies. The properties of synthesised showers are compared with showers from a full detector simulation using geant4. Both variational autoencoders and generative adversarial networks are capable of quickly simulating electromagnetic showers with correct total energies and stochasticity, though the modelling of some shower shape distributions requires more refinement. This feasibility study demonstrates the potential of using such algorithms for ATLAS fast calorimeter simulation in the future and shows a possible way to complement current simulation techniques
    corecore