1,035 research outputs found

    Influence of skew and cross-coupling on flux-weakening performance of permanent-magnet brushless AC machines

    No full text
    A method is proposed for predicting the flux-weakening performance of permanent-magnet (PM) brushless ac machines accounting for skew and d-q axis cross-coupling. The method is based on a d-q-axis flux-linkage model, a hybrid 2-D finite-element (FE)-analytical method being used to predict the d- and q-axis inductances. However, it only requires 2-D FE analysis of the magnetic field distribution over a cross section of the machine. The developed method is used to predict the torque-speed characteristic of an interior PM brushless ac machine with one stator slot-pitch skew. This is compared with predictions from a direct FE analysis of the machine and validated by measurements

    Electromagnetically induced transparency in multi-level cascade scheme of cold rubidium atoms

    Full text link
    We report an experimental investigation of electromagnetically induced transparency in a multi-level cascade system of cold atoms. The absorption spectral profiles of the probe light in the multi-level cascade system were observed in cold Rb-85 atoms confined in a magneto-optical trap, and the dependence of the spectral profile on the intensity of the coupling laser was investigated. The experimental measurements agree with the theoretical calculations based on the density matrix equations of the rubidium cascade system.Comment: 9 pages, 5 figure

    ADTH: Bounded Nodal Delay for Better Performance in Wireless Ad-hoc Networks

    Get PDF
    © 2018 Delay is an unavoidable factor that occurs within networks and may be exacerbated by the nature of wireless ad-hoc networks. Maintaining a manageable level of delay may be required to provide satisfactory performance for each of the nodes that form the network. The variability of IoT devices, topologies and network conditions demand that a standalone and scalable scheme be used. ADTH is first shown to accomplish this through simulations with the NS-2 network simulator. The scheme was then used with testbed implementation with Gumstix devices and real-time traffic provided by an STC Traffic Generator. These demonstrated its effectiveness in managing flows of delay sensitive traffic, in addition to delivering superior bandwidth utilisation than standard policies

    Quasi-local Energy for Spherically Symmetric Spacetimes

    Full text link
    We present two complementary approaches for determining the reference for the covariant Hamiltonian boundary term quasi-local energy and test them on spherically symmetric spacetimes. On the one hand, we isometrically match the 2-surface and extremize the energy. This can be done in two ways, which we call programs I (without constraint) and II (with additional constraints). On the other hand, we match the orthonormal 4-frames of the dynamic and the reference spacetimes. Then, if we further specify the observer by requiring the reference displacement to be the timelike Killing vector of the reference, the result is the same as program I, and the energy can be positive, zero, or even negative. If, instead, we require that the Lie derivatives of the two-area along the displacement vector in both the dynamic and reference spacetimes to be the same, the result is the same as program II, and it satisfies the usual criteria: the energies are non-negative and vanish only for Minkowski (or anti-de Sitter) spacetime.Comment: 16 pages, no figure

    Dark matter and sub-GeV hidden U(1) in GMSB models

    Full text link
    Motivated by the recent PAMELA and ATIC data, one is led to a scenario with heavy vector-like dark matter in association with a hidden U(1)XU(1)_X sector below GeV scale. Realizing this idea in the context of gauge mediated supersymmetry breaking (GMSB), a heavy scalar component charged under U(1)XU(1)_X is found to be a good dark matter candidate which can be searched for direct scattering mediated by the Higgs boson and/or by the hidden gauge boson. The latter turns out to put a stringent bound on the kinetic mixing parameter between U(1)XU(1)_X and U(1)YU(1)_Y: θ106\theta \lesssim 10^{-6}. For the typical range of model parameters, we find that the decay rates of the ordinary lightest neutralino into hidden gauge boson/gaugino and photon/gravitino are comparable, and the former decay mode leaves displaced vertices of lepton pairs and missing energy with distinctive length scale larger than 20 cm for invariant lepton pair mass below 0.5 GeV. An unsatisfactory aspect of our model is that the Sommerfeld effect cannot raise the galactic dark matter annihilation by more than 60 times for the dark matter mass below TeV.Comment: 1+15 pages, 4 figures, version published in JCAP, references added, minor change

    Comparison of K+K^+ and ee^- Quasielastic Scattering

    Get PDF
    We formulate K+K^+-nucleus quasielastic scattering in a manner which closely parallels standard treatments of ee^--nucleus quasielastic scattering. For K+K^+ scattering, new responses involving scalar contributions appear in addition to the Coulomb (or longitudinal) and transverse (e,e)(e,e') responses which are of vector character. We compute these responses using both nuclear matter and finite nucleus versions of the Relativistic Hartree Approximation to Quantum Hadrodynamics including RPA correlations. Overall agreement with measured (e,e)(e,e') responses and new K+K^+ quasielastic scattering data for 40^{40}Ca at |\qs|=500 MeV/c is good. Strong RPA quenching is essential for agreement with the Coulomb response. This quenching is notably less for the K+K^+ cross section even though the new scalar contributions are even more strongly quenched than the vector contributions. We show that this ``differential quenching'' alters sensitive cancellations in the expression for the K+K^+ cross section so that it is reduced much less than the individual responses. We emphasize the role of the purely relativistic distinction between vector and scalar contributions in obtaining an accurate and consistent description of the (e,e)(e,e') and K+K^+ data within the framework of our nuclear structure model.Comment: 26 pages, 5 uuencoded figures appended to end of this fil

    Spin correlations in the algebraic spin liquid - implications for high Tc superconductors

    Full text link
    We propose that underdoped high TcT_c superconductors are described by an algebraic spin liquid (ASL) at high energies, which undergoes a spin-charge recombination transition at low energies. The spin correlation in the ASL is calculated via its effective theory - a system of massless Dirac fermions coupled to a U(1) gauge field. We find that without fine tuning any parameters the gauge interaction strongly enhances the staggered spin correlation even in the presence of a large single particle pseudo-gap. This allows us to show that the ASL plus spin-charge recombination picture can explain many highly unusual properties of underdoped high TcT_c superconductors.Comment: 22 pages, 18 figures, submitted to PR

    Charging Station Optimization Project Based on the Matrix Flexible Charging Reactor

    Get PDF
    In accordance with the Principle of "scientific planning, moderate advancement, rational layout, and classification implementation", the genetic algorithm based on real coding will be improved in this paper for the "Hard to Charge" problem of electric vehicles and urban bus replacement project. Aiming at minimum construction, operation and maintenance, network loss, queuing and other costs, a model is established and an innovative layout of electric bus charging facilities based on Matrix Flexible Charging Reactors is proposed to make full use of resources and improve the "Hard to Charge" situation. Taking Zhuhai as an example, by predicting the number of electric buses in Zhuhai in the planning year, the different locations and capacities of the bus charging stations with smaller average annual comprehensive cost in the regions are realized. And the comprehensive cost of the charging station with Matrix Flexible Charging Reactors as the construction subject is compared with the charging piles’. The analysis shows that this optimization proposal can better meet the future charging demand of urban electric buses, and proves that the charging station with Matrix Flexible Charging Reactors as the main subject of construction is more cost-effective. It provides new ideas for charging facilities planning in other cities, which is conducive to creating a healthier and more orderly environment for electric vehicle charging facilities industry

    Structure of Schlafen13 reveals a new class of tRNA/rRNA- targeting RNase engaged in translational control

    Get PDF
    Cleavage of transfer (t)RNA and ribosomal (r)RNA are critical and conserved steps of translational control for cells to overcome varied environmental stresses. However, enzymes that are responsible for this event have not been fully identified in high eukaryotes. Here, we report a mammalian tRNA/rRNA-targeting endoribonuclease: SLFN13, a member of the Schlafen family. Structural study reveals a unique pseudo-dimeric U-pillow-shaped architecture of the SLFN13 N'-domain that may clamp base-paired RNAs. SLFN13 is able to digest tRNAs and rRNAs in vitro, and the endonucleolytic cleavage dissevers 11 nucleotides from the 3'-terminus of tRNA at the acceptor stem. The cytoplasmically localised SLFN13 inhibits protein synthesis in 293T cells. Moreover, SLFN13 restricts HIV replication in a nucleolytic activity-dependent manner. According to these observations, we term SLFN13 RNase S13. Our study provides insights into the modulation of translational machinery in high eukaryotes, and sheds light on the functional mechanisms of the Schlafen family
    corecore