672 research outputs found
Remarks on Time-Space Noncommutative Field Theories
We propose a physical interpretation of the perturbative breakdown of
unitarity in time-like noncommutative field theories in terms of production of
tachyonic particles. These particles may be viewed as a remnant of a continuous
spectrum of undecoupled closed-string modes. In this way, we give a unified
view of the string-theoretical and the field-theoretical no-go arguments
against time-like noncommutative theories. We also perform a quantitative study
of various locality and causality properties of noncommutative field theories
at the quantum level.Comment: 19 pages, LaTe
Directional detection of Dark Matter
Among the many experimental techniques available, those providing directional
information have the potential of yielding an unambiguous observation of WIMPs
even in the presence of insidious backgrounds. A measurement of the
distribution of arrival direction of WIMPs can also discriminate between
Galactic Dark Matter halo models. In this article, I will discuss the
motivation for directional detectors and review the experimental techniques
used by the various experiments. I will then describe one of them, the DMTPC
detector, in more detail.Comment: 17 pages, 11 postscript figures, mini-review submitted to Modern
Physics Letters A (MPLA). Submitted to Modern Physics Letters A (MPLA
Deciding Where to Publish or Present Your Work
Are you having trouble choosing the best place to publish or present your work? Which publications have the biggest impact? This workshop will provide a general overview of factors to consider when choosing venues to publish and present. We will include a discussion of available tools and resources you can use to gather information and make informed decisions
Bound on the Dark Matter Density in the Solar System from Planetary Motions
High precision planet orbital data extracted from direct observation,
spacecraft explorations and laser ranging techniques enable to put a strong
constraint on the maximal dark matter density of a spherical halo centered
around the Sun. The maximal density at Earth's location is of the order
and shows only a mild dependence on the slope of the halo
profile, taken between 0 and -2. This bound is somewhat better than that
obtained from the perihelion precession limits.Comment: 7 pages, 1 figur
Soft L_e-L_mu-L_tau flavour symmetry breaking and sterile neutrino keV Dark Matter
We discuss how a flavour symmetry that is softly broken
leads to keV sterile neutrinos, which are a prime candidate for Warm Dark
Matter. This is to our knowledge the first model where flavour symmetries are
applied simultaneously to active and sterile neutrinos explaining at the same
time active neutrino properties and this peculiar Dark Matter scenario. The
essential point is that different scales of the symmetry breaking and the
symmetry preserving entries in the mass matrix lead to one right-handed
neutrino which is nearly massless compared to the other two. Furthermore, we
naturally predict vanishing and maximal , while the
correct value of must come from the mixing of the charged
leptons. We can furthermore predict an exact mass spectrum for the light
neutrinos, which will be testable in the very near future.Comment: 14 page
Dark matter effects in vacuum spacetime
We analyze a toy model describing an empty spacetime in which the motion of a
test mass (and the trajectories of photons) evidence the presence of a
continuous and homogeneous distribution of matter; however, since the
energy-momentum tensor vanishes, no real matter or energy distribution is
present at all. Thus, a hypothetical observer will conclude that he is immersed
in some sort of dark matter, even though he has no chance to directly detect
it. This suggests yet another possibility of explaining the elusive dark matter
as a purely dynamical effect due to the curvature of spacetime.Comment: 5 pages, 2 figures, expanded with comments about the exact motion and
curvature invariant
Discrete Matter, Far Fields, and Dark Matter
We show that in cosmology the gravitational action of the far away matter has
quite relevant effects, if retardation of the forces and discreteness of matter
(with its spatial correlation) are taken into account. The expansion rate is
found to be determined by the density of the far away matter, i.e., by the
density of matter at remote times. This leads to the introduction of an
effective density, which has to be five times larger than the present one, if
the present expansion rate is to be accounted for. The force per unit mass on a
test particle is found to be of the order of 0.2cH_0. The corresponding
contribution to the virial of the forces for a cluster of galaxies is also
discussed, and it is shown that it fits the observations if a decorrelation
property of the forces at two separated points is assumed. So it appears that
the gravitational effects of the far away matter may have the same order of
magnitude as the corresponding local effects of dark matter.Comment: 16 pages, 1 figure. LaTex documen
The Effect of Substructure on Mass Estimates of Galaxies
Large galaxies are thought to form hierarchically, from the accretion and
disruption of many smaller galaxies. Such a scenario should naturally lead to
galactic phase-space distributions containing some degree of substructure. We
examine the errors in mass estimates of galaxies and their dark halos made
using the projected phase-space distribution of a tracer population (such as a
globular cluster system or planetary nebulae) due to falsely assuming that the
tracers are distributed randomly. The level of this uncertainty is assessed by
applying a standard mass estimator to samples drawn from 11 random realizations
of galaxy halos containing levels of substructure consistent with current
models of structure formation. We find that substructure will distort our mass
estimates by up to ~20% - a negligible error compared to statistical and
measurement errors in current derivations of masses for our own and other
galaxies. However, this represents a fundamental limit to the accuracy of any
future mass estimates made under the assumption that the tracer population is
distributed randomly, regardless of the size of the sample or the accuracy of
the measurements.Comment: 9 pages, 8 figures, Astrophysical Journal, in pres
CIRS: Cluster Infall Regions in the Sloan Digital Sky Survey I. Infall Patterns and Mass Profiles
We use the Fourth Data Release of the Sloan Digital Sky Survey to test the
ubiquity of infall patterns around galaxy clusters and measure cluster mass
profiles to large radii. We match X-ray cluster catalogs with SDSS, search for
infall patterns, and compute mass profiles for a complete sample of X-ray
selected clusters. Very clean infall patterns are apparent in most of the
clusters, with the fraction decreasing with increasing redshift due to
shallower sampling. All 72 clusters in a well-defined sample limited by
redshift (ensuring good sampling) and X-ray flux (excluding superpositions)
show infall patterns sufficient to apply the caustic technique. This sample is
by far the largest sample of cluster mass profiles extending to large radii to
date. Similar to CAIRNS, cluster infall patterns are better defined in
observations than in simulations. Further work is needed to determine the
source of this difference. We use the infall patterns to compute mass profiles
for 72 clusters and compare them to model profiles. Cluster scaling relations
using caustic masses agree well with those using X-ray or virial mass
estimates, confirming the reliability of the caustic technique. We confirm the
conclusion of CAIRNS that cluster infall regions are well fit by NFW and
Hernquist profiles and poorly fit by singular isothermal spheres. This much
larger sample enables new comparisons of cluster properties with those in
simulations. The shapes (specifically, NFW concentrations) of the mass profiles
agree well with the predictions of simulations. The mass inside the turnaround
radius is on average 2.190.18 times that within the virial radius. This
ratio agrees well with recent predictions from simulations of the final masses
of dark matter haloes.Comment: 34 pages, 24 figures, accepted for publication in AJ, full resolution
version available at http://www.astro.yale.edu/krines
- …