27 research outputs found

    Kaolinite particles as ice nuclei: learning from the use of different kaolinite samples and different coatings

    Get PDF
    Kaolinite particles from two different sources (Fluka and Clay Minerals Society (CMS)) were examined with respect to their ability to act as ice nuclei (IN). This was done in the water-subsaturated regime where often deposition ice nucleation is assumed to occur, and for water-supersaturated conditions, i.e., in the immersion freezing mode. Measurements were done using a flow tube (the Leipzig Aerosol Cloud Interaction Simulator, LACIS) and a continuous-flow diffusion chamber (CFDC). Pure and coated particles were used, with coating thicknesses of a few nanometers or less, where the coating consisted of levoglucosan, succinic acid or sulfuric acid. In general, it was found that the coatings strongly reduced deposition ice nucleation. Remaining ice formation in the water-subsaturated regime could be attributed to immersion freezing, with particles immersed in concentrated solutions formed by the coatings. In the immersion freezing mode, ice nucleation rate coefficients jhet from both instruments agreed well with each other, particularly when the residence times in the instruments were accounted for. Fluka kaolinite particles coated with either levoglucosan or succinic acid showed the same IN activity as pure Fluka kaolinite particles; i.e., it can be assumed that these two types of coating did not alter the ice-active surface chemically, and that the coatings were diluted enough in the droplets that were formed prior to the ice nucleation, so that freezing point depression was negligible. However, Fluka kaolinite particles, which were either coated with pure sulfuric acid or were first coated with the acid and then exposed to additional water vapor, both showed a reduced ability to nucleate ice compared to the pure particles. For the CMS kaolinite particles, the ability to nucleate ice in the immersion freezing mode was similar for all examined particles, i.e., for the pure ones and the ones with the different types of coating. Moreover, jhet derived for the CMS kaolinite particles was comparable to jhet derived for Fluka kaolinite particles coated with sulfuric acid. This is suggestive for the Fluka kaolinite possessing a type of ice-nucleating surface feature which is not present on the CMS kaolinite, and which can be destroyed by reaction with sulfuric acid. This might be potassium feldspar

    Impact of the South Asian monsoon outflow on atmospheric hydroperoxides in the upper troposphere

    Get PDF
    During the OMO (Oxidation Mechanism Observation) mission, trace gas measurements were performed on board the HALO (High Altitude Long Range) research aircraft in summer 2015 in order to investigate the outflow of the South Asian summer monsoon and its influence on the composition of the Asian monsoon anticyclone (AMA) in the upper troposphere over the eastern Mediterranean and the Arabian Peninsula. This study focuses on in situ observations of hydrogen peroxide (H2_{2}O2_{2}obs^{obs}) and organic hydroperoxides (ROOHobs^{obs}) as well as their precursors and loss processes. Observations are compared to photostationary-state (PSS) calculations of H2_{2}O2_{2}PSS^{PSS} and extended by a separation of ROOHobs^{obs} into methyl hydroperoxide (MHPPSS^{PSS}) and inferred unidentified hydroperoxide (UHPPSS^{PSS}) mixing ratios using PSS calculations. Measurements are also contrasted to simulations with the general circulation ECHAM–MESSy for Atmospheric Chemistry (EMAC) model. We observed enhanced mixing ratios of H2_{2}O2_{2}obs^{obs} (45 %), MHPPSS^{PSS} (9 %), and UHPPSS (136 %) in the AMA relative to the northern hemispheric background. Highest concentrations for H2_{2}O2_{2}obs^{obs} and MHPPSS^{PSS} of 211 and 152 ppbV_{V}, respectively, were found in the tropics outside the AMA, while for UHPPSS^{PSS}, with 208 pptV_{V}, highest concentrations were found within the AMA. In general, the observed concentrations are higher than steady-state calculations and EMAC simulations by a factor of 3 and 2, respectively. Especially in the AMA, EMAC underestimates the H2_{2}O2_{2}EMAC^{EMAC} (medians: 71 pptV_{V} vs. 164 pptV_{V}) and ROOHEMAC (medians: 25 pptV_{V} vs. 278 pptV_{V}) mixing ratios. Longitudinal gradients indicate a pool of hydroperoxides towards the center of the AMA, most likely associated with upwind convection over India. This indicates main contributions of atmospheric transport to the local budgets of hydroperoxides along the flight track, explaining strong deviations from steady-state calculations which only account for local photochemistry. Underestimation of H2_{2}O2_{2}EMAC^{EMAC} by approximately a factor of 2 in the Northern Hemisphere (NH) and the AMA and overestimation in the Southern Hemisphere (SH; factor 1.3) are most likely due to uncertainties in the scavenging efficiencies for individual hydroperoxides in deep convective transport to the upper troposphere, corroborated by a sensitivity study. It seems that the observed excess UHPPSS is excess MHP transported to the west from an upper tropospheric source related to convection in the summer monsoon over Southeast Asia

    Volatile organic compounds (VOCs) in photochemically aged air from the eastern and western Mediterranean

    Get PDF
    During the summertime CYPHEX campaign (CYprus PHotochemical EXperiment 2014) in the eastern Mediterranean, multiple volatile organic compounds (VOCs) were measured from a 650 m hilltop site in western Cyprus (34° 57′ N/32° 23′ E). Periodic shifts in the northerly Etesian winds resulted in the site being alternately impacted by photochemically processed emissions from western (Spain, France, Italy) and eastern (Turkey, Greece) Europe. Furthermore, the site was situated within the residual layer/free troposphere during some nights which were characterized by high ozone and low relative humidity levels. In this study we examine the temporal variation of VOCs at the site. The sparse Mediterranean scrub vegetation generated diel cycles in the reactive biogenic hydrocarbon isoprene, from very low values at night to a diurnal median level of 80–100 pptv. In contrast, the oxygenated volatile organic compounds (OVOCs) methanol and acetone exhibited weak diel cycles and were approximately an order of magnitude higher in mixing ratio (ca. 2.5–3 ppbv median level by day, range: ca. 1–8 ppbv) than the locally emitted isoprene and aromatic compounds such as benzene and toluene. Acetic acid was present at mixing ratios between 0.05 and 4 ppbv with a median level of ca. 1.2 ppbv during the daytime. When data points directly affected by the residual layer/free troposphere were excluded, the acid followed a pronounced diel cycle, which was influenced by various local effects including photochemical production and loss, direct emission, dry deposition and scavenging from advecting air in fog banks. The Lagrangian model FLEXPART was used to determine transport patterns and photochemical processing times (between 12 h and several days) of air masses originating from eastern and western Europe. Ozone and many OVOC levels were  ∼  20 and  ∼  30–60 % higher, respectively, in air arriving from the east. Using the FLEXPART calculated transport time, the contribution of photochemical processing, sea surface contact and dilution was estimated. Methanol and acetone decreased with residence time in the marine boundary layer (MBL) with loss rate constants of 0.74 and 0.53 day−1 from eastern Europe and 0.70 and 0.34 day−1 from western Europe, respectively. Simulations using the EMAC model underestimate these loss rates. The missing sink in the calculation is most probably an oceanic uptake enhanced by microbial consumption of methanol and acetone, although the temporal and spatial variability in the source strength on the continents might play a role as well. Correlations between acetone and methanol were weaker in western air masses (r2  =  0.68), but were stronger in air masses measured after the shorter transport time from the east (r2  =  0.73)

    Measurement report: Emission factors of NH3 and NHx for wildfires and agricultural fires in the United States.

    Get PDF
    Ammonia (NH3) is an important trace gas in the atmosphere and fires are among the poorly investigated sources. During the FIREX-AQ aircraft campaign in 2019, we measured gaseous ammonia and particulate ammonium (NH4+) in smoke plumes emitted from six wildfires in the Western US and 66 small agricultural fires in the Southeastern US. We herein present a comprehensive set of emission factors of NH3 and NHx, with NHx = NH3 + NH4+

    Oxidation processes in the eastern Mediterranean atmosphere: evidence from the modelling of HOx measurements over Cyprus

    Get PDF
    The Mediterranean is a climatically sensitive region located at the crossroads of air masses from three continents: Europe, Africa, and Asia. The chemical processing of air masses over this region has implications not only for the air quality but also for the long-range transport of air pollution. To obtain a comprehensive understanding of oxidation processes over the Mediterranean, atmospheric concentrations of the hydroxyl radical (OH) and the hydroperoxyl radical (HO2) were measured during an intensive field campaign (CYprus PHotochemistry EXperiment, CYPHEX-2014) in the northwest of Cyprus in the summer of 2014. Very low local anthropogenic and biogenic emissions around the measurement location provided a vantage point to study the contrasts in atmospheric oxidation pathways under highly processed marine air masses and those influenced by relatively fresh emissions from mainland Europe. The CYPHEX measurements were used to evaluate OH and HO2 simulations using a photochemical box model (CAABA/MECCA) constrained with CYPHEX observations of O3, CO, NOx, hydrocarbons, peroxides, and other major HOx (OH+HO2) sources and sinks in a low-NOx environment (<100pptv of NO). The model simulations for OH agreed to within 10% with in situ OH observations. Model simulations for HO2 agreed to within 17% of the in situ observations. However, the model strongly under-predicted HO2 at high terpene concentrations, this under-prediction reaching up to 38% at the highest terpene levels. Different schemes to improve the agreement between observed and modelled HO2, including changing the rate coefficients for the reactions of terpene-generated peroxy radicals (RO2) with NO and HO2 as well as the autoxidation of terpene-generated RO2 species, are explored in this work. The main source of OH in Cyprus was its primary production from O3 photolysis during the day and HONO photolysis during early morning. Recycling contributed about one-third of the total OH production, and the maximum recycling efficiency was about 0.7. CO, which was the largest OH sink, was also the largest HO2 source. The lowest HOx production and losses occurred when the air masses had higher residence time over the oceans

    Spurengastransport aus dem indischen Sommermonsun

    No full text
    The Asian Monsoon Anticyclone (AMA) is a yearly recurring phenomenon in the upper troposphere, where it plays an important role in the chemical composition during the Indian summer monsoon. Therefore we investigated the transport of trace gases during the aircraft campaign OMO (Oxidation Mechanism Observations) in summer 2015. The German research aircraft HALO (High Altitude and Long Range Research Aircraft) performed flights in the upper troposphere over the Arabian Sea, the Arabian Peninsula and the Mediterranean Sea. Here we investigate the distribution of methane (CH4) and carbon monoxide (CO), measured with the IR-laser absorption spectrometer TRISTAR. For more detailed analysis we used simulations with the atmospheric-chemistry global circulation model EMAC and back trajectories from the Lagrangian particle dispersion model FLEXPART. From background profiles we calculated a CH4-threshold to distinguish between background and AMA influence. The in situ mixing ratios for CH4 and CO increased during AMA influence by about 72.1 ppb and 20.1 ppb, respectively. EMAC simulated an increase of about 24.0 ppb (CH4) and 14.7 ppb (CO). Both trace gases are appropriate tracers to identify long range transport from the source regions in Northern India via convection and transport westwards along the southern edge of the AMA

    Upper tropospheric CH<sub>4</sub> and CO affected by the South Asian summer monsoon during OMO

    No full text
    The Asian monsoon anticyclone (AMA) is a yearly recurring phenomen on in the Northern hemispheric upper troposphere and lower stratosphere. It is connected to the South Asian summer monsoon, and the circulation extends approximately across 20° - 120°E and 15° - 40°N longitude - latitude. It has a clearly observable signature due to vertical transport of polluted air masses from the surface to the upper troposphere by the monsoon convection. However, the transport pathways and the fate of pollutants in the upper troposphere are not yet fully understood. As pollution emissions in South Asia are increasing, changes in the chemical composition of the AMA can be expected. We performed in situ measurements of carbon monoxide (CO) and methane (CH4) in the region of monsoon outflow and in background air in the upper troposphere (Mediterranean, Arabian peninsula, Arabian Sea) by optical absorption spectroscopy on board the German High Altitude and Long range (HALO) research aircraft during the OMO (Oxidation Mechanism Observations) mission in summer 2015. We identified the transport pathways and the origin of the trace gases with back trajectories, calculated with the Lagrangian particle dispersion model FLEXPART, and we compared the in situ data with imulations of the atmospheric chemistry general circulation model EMAC. CH4 and CO mixing ratios were found to be enhanced within the AMA, on average by 72.1 ppbv and 20.1 ppbv, respectively, originating in the South Asian region (Indio-Gangetic plain, North East India, Bangladesh and Bay of Bengal). It appears that CH4 is an ideal monsoon tracer in the upper troposphere due to its extended lifetime and the strong South Asian emissions. Furthermore, we used the measurements and model results to study the dynamics of the AMA, with an emphasis on the southern and western areas within the upper troposphere. For example, we distinguished four AMA modes based on different meteorological conditions. During one occasion we observed that under the influence of dwindling flow the transport barrier between the anticyclone and its surroundings weakened, expelling air masses from the AMA. The trace gases exhibited a distinct fingerprint of the AMA, and we also found that CH4 accumulated over the course of the OMO campaign

    An aircraft gas chromatograph-mass spectrometer System for Organic Fast Identification Analysis (SOFIA): design, performance and a case study of Asian monsoon pollution outflow

    No full text
    Volatile organic compounds (VOC) are important for global air quality and oxidation processes in the troposphere. In addition to ground-based measurements, the chemical evolution of such species during transport can be studied by performing in-situ airborne measurements. Generally, aircraft instrumentation needs to be sensitive, robust and sample at higher frequency than ground based systems while their construction must comply with rigorous mechanical and electrical safety standards. Here, we present a new System for Organic Fast Identification Analysis (SOFIA), which is a custom built fast Gas Chromatography – Mass Spectrometry (GC-MS) system with a time resolution of 2–3 min. The relatively high time resolution is the result of a novel cryogenic pre-concentration unit which rapidly cools (~ 6 °C/s) the sample enrichment traps to −140 °C, and a new chromatographic oven designed for rapid cooling rates (~ 30 °C/s) and subsequent thermal stabilization. SOFIA was installed in the High Altitude and Long Range Research Aircraft (HALO) for the Oxidation Mechanism Observations (OMO) campaign in August 2015, aimed at investigating the Asian monsoon pollution outflow in the tropical upper troposphere. In addition to a comprehensive instrument characterization we present an example monsoon plume crossing flight as a case study to demonstrate the instrument capability. Hydro- and halocarbon data from SOFIA are compared with mixing ratios of carbon monoxide (CO) and methane (CH4), used to define the pollution plume. By using excess (ExR) and normalized excess mixing ratios (NEMRs) the pollution could be attributed to two air masses of distinctly different origin, identified by back-trajectory analysis. This work endorses the use of SOFIA for aircraft operation and demonstrates the value of relatively high-frequency, multicomponent measurements in atmospheric chemistry research

    Upper tropospheric CH<sub>4</sub> and CO affected by the South Asian summer monsoon during the Oxidation Mechanism Observations mission

    No full text
    The Asian monsoon anticyclone (AMA) is annual phenomenon in the northern hemispheric upper troposphere and lower stratosphere. It is part of the South Asian summer monsoon system, and it has a clearly observable signature due to the vertical transport of polluted air masses from the surface to the upper troposphere by monsoon convection. We performed in situ measurements of carbon monoxide (CO) and methane (CH4) in the region of monsoon outflow and in background air in the upper troposphere (Mediterranean, Arabian Peninsula, and Arabian Sea) using optical absorption spectroscopy on board the High Altitude and LOng range (HALO) research aircraft during the OMO (Oxidation Mechanism Observations) mission in summer 2015. We identified the transport pathways and the origin of the trace gases with back trajectories, which were calculated using the Lagrangian particle dispersion model FLEXPART, and we compared the in situ data with simulations of the atmospheric chemistry general circulation model EMAC. CH4 and CO mixing ratios were found to be enhanced within the AMA, the in situ data increased by 72.1 and 20.1 ppbv on average, respectively, and originated in the South Asian region (Indo-Gangetic Plain, northeastern India, Bangladesh, and the Bay of Bengal). It appears that CH4 is an ideal monsoon tracer in the upper troposphere due to its extended lifetime and the strong South Asian emissions. Furthermore, we used the measurements and model results to study the dynamics of the AMA over several weeks during the monsoon season, with an emphasis on the southern and western areas in the upper troposphere. We distinguished four AMA modes based on different meteorological conditions. On one occasion we observed that under the influence of dwindling flow the transport barrier between the anticyclone and its sur-roundings weakened, expelling air masses from the AMA. The trace gases exhibited a distinct AMA fingerprint; we also found that CH4 accumulated over the course of the OMO campaign

    An aircraft gas chromatograph-mass spectrometer System for Organic Fast Identification Analysis (SOFIA): design, performance and a case study of Asian monsoon pollution outflow

    No full text
    Volatile organic compounds (VOCs) are important for global air quality and oxidation processes in the troposphere. In addition to ground-based measurements, the chemical evolution of such species during transport can be studied by performing in situ airborne measurements. Generally, aircraft instrumentation needs to be sensitive, robust and sample at higher frequency than ground-based systems while their construction must comply with rigorous mechanical and electrical safety standards. Here, we present a new System for Organic Fast Identification Analysis (SOFIA), which is a custom-built fast gas chromatography–mass spectrometry (GC-MS) system with a time resolution of 2–3 min and the ability to quantify atmospheric mixing ratios of halocarbons (e.g. chloromethanes), hydrocarbons (e.g isoprene), oxygenated VOCs (acetone, propanal, butanone) and aromatics (e.g. benzene, toluene) from sub-ppt to ppb levels. The relatively high time resolution is the result of a novel cryogenic pre-concentration unit which rapidly cools (∼ 6 °C s−1) the sample enrichment traps to −140 °C, and a new chromatographic oven designed for rapid cooling rates (∼ 30 °C s−1) and subsequent thermal stabilization. SOFIA was installed in the High Altitude and Long Range Research Aircraft (HALO) for the Oxidation Mechanism Observations (OMO) campaign in August 2015, aimed at investigating the Asian monsoon pollution outflow in the tropical upper troposphere. In addition to a comprehensive instrument characterization we present an example monsoon plume crossing flight as a case study to demonstrate the instrument capability. Hydrocarbon, halocarbon and oxygenated VOC data from SOFIA are compared with mixing ratios of carbon monoxide (CO) and methane (CH4), used to define the pollution plume. By using excess (ExMR) and normalized excess mixing ratios (NEMRs) the pollution could be attributed to two air masses of distinctly different origin, identified by back-trajectory analysis. This work endorses the use of SOFIA for aircraft operation and demonstrates the value of relatively high-frequency, multicomponent measurements in atmospheric chemistry research
    corecore