359 research outputs found

    Subretinal Implantation of Electrospun, Short Nanowire, and Smooth Poly(ε-caprolactone) Scaffolds to the Subretinal Space of Porcine Eyes

    Get PDF
    Biodegradable scaffolds play an important adjunct role in transplantation of retinal progenitor cells (RPCs) to the subretinal space. Poly(ε-Caprolactone) (PCL) scaffolds with different modifications were subretinally implanted in 28 porcine eyes and evaluated by multifocal electroretinography (mfERG) and histology after 6 weeks of observation. PCL Short Nanowire, PCL Electrospun, and PCL Smooth scaffolds were well tolerated in the subretinal space in pigs and caused no inflammation and limited tissue disruption. PCL Short Nanowire had an average rate of preserved overlying outer retina 17% higher than PCL Electrospun and 25% higher than PCL Smooth. Furthermore, PCL Short Nanowire was found to have the most suitable degree of stiffness for surgical delivery to the subretinal space. The membrane-induced photoreceptor damage could be shown on mfERG, but the reductions in P1 amplitude were only significant for the PCL Smooth. We conclude that of the tested scaffolds, PCL Short Nanowire is the best candidate for subretinal implantation

    Use of complementary and alternative medicine at Norwegian and Danish hospitals

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Several studies have found that a high proportion of the population in western countries use complementary and alternative medicine (CAM). However, little is known about whether CAM is offered in hospitals. The aim of this study was to describe to what extent CAM is offered in Norwegian and Danish hospitals and investigate possible changes in Norway since 2001.</p> <p>Methods</p> <p>A one-page questionnaire was sent to all included hospitals in both countries. The questionnaire was sent to the person responsible for the clinical activity, typically the medical director. 99 hospitals in the authority (85%) in Norway and 126 in Denmark (97%) responded. Given contact persons were interviewed.</p> <p>Results</p> <p>CAM is presently offered in about 50% of Norwegian hospitals and one-third of Danish hospitals. In Norway CAM was offered in 50 hospitals, 40 of which involved acupuncture. 19 hospitals gave other alternative therapies like biofeedback, hypnosis, cupping, ear-acupuncture, herbal medicine, art therapy, homeopathy, reflexology, thought field therapy, gestalt therapy, aromatherapy, tai chi, acupressure, yoga, pilates and other. 9 hospitals offered more than one therapy form. In Denmark 38 hospitals offered acupuncture and one Eye Movement Desensitization and Reprocessing Light Therapy. The most commonly reported reason for offering CAM was scientific evidence in Denmark. In Norway it was the interest of a hospital employee, except for acupuncture where the introduction is more often initiated by the leadership and is more based on scientific evidence of effect. All persons (except one) responsible for the alternative treatment had a medical or allied health professional background and their education/training in CAM treatment varied substantially.</p> <p>Conclusions</p> <p>The extent of CAM being offered has increased substantially in Norway during the first decade of the 21<sup>st </sup>century. This might indicate a shift in attitude regarding CAM within the conventional health care system.</p

    The HIBEAM program: search for neutron oscillations at the ESS

    Full text link
    With the construction of the European Spallation Source, a remarkable opportunity has emerged to conduct high sensitivity searches for neutron oscillations, including a first search for thirty years for free neutrons converting to antineutrons. Furthermore, searches can be made for transitions of neutrons and antineutrons to sterile neutron states. The HIBEAM program provides an increase in sensitivity of an order of magnitude compared to previous work. The HIBEAM program corresponds to baryon number violation by one and two units. The observation of a process satisfying a Sakharov condition addresses the open question of the origin of the matter-antimatter asymmetry in the Universe. Sterile neutron states would belong to a `dark' sector of particles which may explain dark matter. As electrically neutral, meta-stable objects that can be copiously produced and studied, neutrons represent an attractive portal to a `dark' sector. This paper describes the capability, design, infrastructure, and potential of the HIBEAM program. This includes a dedicated beamline, neutron optical system, magnetic shielding and control, and detectors for neutrons and antineutrons.Comment: 41 pages, 12 figure

    Insights into the Function of the CRM1 Cofactor RanBP3 from the Structure of Its Ran-Binding Domain

    Get PDF
    Proteins bearing a leucine-rich nuclear export signal (NES) are exported from the nucleus by the transport factor CRM1, which forms a cooperative ternary complex with the NES-bearing cargo and with the small GTPase Ran. CRM1-mediated export is regulated by RanBP3, a Ran-interacting nuclear protein. Unlike the related proteins RanBP1 and RanBP2, which promote disassembly of the export complex in the cytosol, RanBP3 acts as a CRM1 cofactor, enhancing NES export by stabilizing the export complex in the nucleus. RanBP3 also alters the cargo selectivity of CRM1, promoting recognition of the NES of HIV-1 Rev and of other cargos while deterring recognition of the import adaptor protein Snurportin1. Here we report the crystal structure of the Ran-binding domain (RBD) from RanBP3 and compare it to RBD structures from RanBP1 and RanBP2 in complex with Ran and CRM1. Differences among these structures suggest why RanBP3 binds Ran with unusually low affinity, how RanBP3 modulates the cargo selectivity of CRM1, and why RanBP3 promotes assembly rather than disassembly of the export complex. The comparison of RBD structures thus provides an insight into the functional diversity of Ran-binding proteins

    Actin binding to WH2 domains regulates nuclear import of the multifunctional actin regulator JMY

    Get PDF
    © The Author(s), 2012. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Molecular Biology of the Cell 23 (2012): 853-863, doi:10.1091/mbc.E11-12-0992.Junction-mediating and regulatory protein (JMY) is a regulator of both transcription and actin filament assembly. In response to DNA damage, JMY accumulates in the nucleus and promotes p53-dependent apoptosis. JMY's actin-regulatory activity relies on a cluster of three actin-binding Wiskott–Aldrich syndrome protein homology 2 (WH2) domains that nucleate filaments directly and also promote nucleation activity of the Arp2/3 complex. In addition to these activities, we find that the WH2 cluster overlaps an atypical, bipartite nuclear localization sequence (NLS) and controls JMY's subcellular localization. Actin monomers bound to the WH2 domains block binding of importins to the NLS and prevent nuclear import of JMY. Mutations that impair actin binding, or cellular perturbations that induce actin filament assembly and decrease the concentration of monomeric actin in the cytoplasm, cause JMY to accumulate in the nucleus. DNA damage induces both cytoplasmic actin polymerization and nuclear import of JMY, and we find that damage-induced nuclear localization of JMY requires both the WH2/NLS region and importin β. On the basis of our results, we propose that actin assembly regulates nuclear import of JMY in response to DNA damage.This work was supported by grants from the National Institutes of Health, an American Heart Association Predoctoral Fellowship (J.B.Z.), the Robert Day Allen Fellowship Fund (J.B.Z.), and a National Science Foundation Predoctoral Fellowship (B.B.)

    Contribution of DEAF1 Structural Domains to the Interaction with the Breast Cancer Oncogene LMO4

    Get PDF
    The proteins LMO4 and DEAF1 contribute to the proliferation of mammary epithelial cells. During breast cancer LMO4 is upregulated, affecting its interaction with other protein partners. This may set cells on a path to tumour formation. LMO4 and DEAF1 interact, but it is unknown how they cooperate to regulate cell proliferation. In this study, we identify a specific LMO4-binding domain in DEAF1. This domain contains an unstructured region that directly contacts LMO4, and a coiled coil that contains the DEAF1 nuclear export signal (NES). The coiled coil region can form tetramers and has the typical properties of a coiled coil domain. Using a simple cell-based assay, we show that LMO4 modulates the activity of the DEAF NES, causing nuclear accumulation of a construct containing the LMO4-interaction region of DEAF1
    corecore