3,531 research outputs found

    New applications of the renormalization group method in physics -- a brief introduction

    Full text link
    The renormalization group method developed by Ken Wilson more than four decades ago has revolutionized the way we think about problems involving a broad range of energy scales such as phase transitions, turbulence, continuum limits and bifurcations in dynamical systems. The theme issue provides articles reviewing recent progress made using the renormalization group method in atomic, condensed matter, nuclear and particle physics. In the following we introduce these articles in a way that emphasizes common themes and the universal aspects of the method.Comment: Introduction for a theme issue of the Phil. Trans.

    Visibility graphs for fMRI data: Multiplex temporal graphs and their modulations across resting-state networks.

    Get PDF
    Visibility algorithms are a family of methods that map time series into graphs, such that the tools of graph theory and network science can be used for the characterization of time series. This approach has proved a convenient tool, and visibility graphs have found applications across several disciplines. Recently, an approach has been proposed to extend this framework to multivariate time series, allowing a novel way to describe collective dynamics. Here we test their application to fMRI time series, following two main motivations, namely that (a) this approach allows vs to simultaneously capture and process relevant aspects of both local and global dynamics in an easy and intuitive way, and (b) this provides a suggestive bridge between time series and network theory that nicely fits the consolidating field of network neuroscience. Our application to a large open dataset reveals differences in the similarities of temporal networks (and thus in correlated dynamics) across resting-state networks, and gives indications that some differences in brain activity connected to psychiatric disorders could be picked up by this approach

    Electroweak phase transition in technicolor

    Full text link
    Several phenomenologically viable walking technicolor models have been proposed recently. I demonstrate that these models can have first order electroweak phase transitions, which are sufficiently strong for electroweak baryogenesis. Strong dynamics can also lead to several separate transitions at the electroweak scale, with the possibility of a temporary restoration and an extra breaking of the electroweak symmetry. First order phase transitions will produce gravitational waves, which may be detectable at future experiments.Comment: 6 pages, 4 figures. Talk at PASCOS 2010 conference, Valencia, 19-23 July 201

    Patterns of Dynamical Gauge Symmetry Breaking

    Full text link
    We construct and analyze theories with a gauge symmetry in the ultraviolet of the form GGbG \otimes G_b, in which the vectorial, asymptotically free GbG_b gauge interaction becomes strongly coupled at a scale where the GG interaction is weakly coupled and produces bilinear fermion condensates that dynamically break the GG symmetry. Comparisons are given between Higgs and dynamical symmetry breaking mechanisms for various models.Comment: 14 pages, late

    Natural fourth generation of leptons

    Full text link
    We consider implications of a fourth generation of leptons, allowing for the most general mass patterns for the fourth generation neutrino. We determine the constraints due to the precision electroweak measurements and outline the signatures to search for at the LHC experiments. As a concrete framework to apply these results we consider the minimal walking technicolor (MWTC) model where the matter content, regarding the electroweak quantum numbers, corresponds to a fourth generation.Comment: 21 pages, 11 figures, 1 table; version to appear in JHE

    Thrust distribution for 3-jet production from e+e 12 annihilation within the QCD conformal window and in QED

    Get PDF
    We investigate the theoretical predictions for thrust distribution in the electron positron annihilation to three-jets process at NNLO for different values of the number of flavors, Nf. To determine the distribution along the entire renormalization group flow from the highest energies to zero energy we consider the number of flavors near the upper boundary of the conformal window. In this regime of number of flavors the theory develops a perturbative infrared interacting fixed point. We then consider also the QED thrust obtained as the limit Nc\u21920 of the number of colors. In this case the low energy limit is governed by an infrared free theory. Using these quantum field theories limits as theoretical laboratories we arrive at an interesting comparison between the Conventional Scale Setting - (CSS) and the Principle of Maximum Conformality (PMC 1e) methods. We show that within the perturbative regime of the conformal window and also out of the conformal window the PMC 1e leads to a higher precision, and that reducing the number of flavors, from the upper boundary to the lower boundary, through the phase transition the curves given by the PMC 1e method preserve with continuity the position of the peak, showing perfect agreement with the experimental data already at NNLO

    Improved Lattice Spectroscopy of Minimal Walking Technicolor

    Get PDF
    We present a numerical study of spectroscopic observables in the SU(2) gauge theory with two adjoint fermions using improved source and sink operators. We compare in detail our improved results with previous determinations of masses that used point sources and sinks and we investigate possible systematic effects in both cases. Such comparison enables us to clearly assess the impact of a short temporal extent on the physical picture, and to investigate some effects due to the finite spatial box. While confirming the IR-conformal behaviour of the theory, our investigation shows that in order to make firm quantitative predictions, a better handle on finite size effects is needed.Comment: 33 pages, 30 figures, 18 table
    corecore