43 research outputs found

    Estimating Animal Abundance in Ground Beef Batches Assayed with Molecular Markers

    Get PDF
    Estimating animal abundance in industrial scale batches of ground meat is important for mapping meat products through the manufacturing process and for effectively tracing the finished product during a food safety recall. The processing of ground beef involves a potentially large number of animals from diverse sources in a single product batch, which produces a high heterogeneity in capture probability. In order to estimate animal abundance through DNA profiling of ground beef constituents, two parameter-based statistical models were developed for incidence data. Simulations were applied to evaluate the maximum likelihood estimate (MLE) of a joint likelihood function from multiple surveys, showing superiority in the presence of high capture heterogeneity with small sample sizes, or comparable estimation in the presence of low capture heterogeneity with a large sample size when compared to other existing models. Our model employs the full information on the pattern of the capture-recapture frequencies from multiple samples. We applied the proposed models to estimate animal abundance in six manufacturing beef batches, genotyped using 30 single nucleotide polymorphism (SNP) markers, from a large scale beef grinding facility. Results show that between 411∼1367 animals were present in six manufacturing beef batches. These estimates are informative as a reference for improving recall processes and tracing finished meat products back to source

    Estimation of population size when capture probability depends on individual state

    Get PDF
    We develop a multi-state model to estimate the size of a closed population from capture–recapture studies. We consider the case where capture–recapture data are not of a simple binary form, but where the state of an individual is also recorded upon every capture as a discrete variable. The proposed multi-state model can be regarded as a generalisation of the commonly applied set of closed population models to a multi-state form. The model allows for heterogeneity within the capture probabilities associated with each state while also permitting individuals to move between the different discrete states. A closed-form expression for the likelihood is presented in terms of a set of sufficient statistics. The link between existing models for capture heterogeneity is established, and simulation is used to show that the estimate of population size can be biased when movement between states is not accounted for. The proposed unconditional approach is also compared to a conditional approach to assess estimation bias. The model derived in this paper is motivated by a real ecological data set on great crested newts, Triturus cristatus. Supplementary materials accompanying this paper appear online

    Comparison of dose-finding designs for narrow-therapeutic-index drugs: Concentration-controlled vs. dose-controlled trials

    No full text
    This study compared the performances of randomized dose-controlled trials (DCTs) with those of concentration-controlled trials (CCTs) in dose finding for drugs with narrow therapeutic indexes. A simulation-based study was performed for a hypothetical immunosuppressant agent with two clinical end points. Different scenarios were simulated and analyzed, and three designs were compared: one DCT and two CCTs (a target-equivalent CCT and a variability-equivalent CCT). The DCT was consistently superior to the CCTs in the following aspects: (i) precision and bias reduction in parameter estimates, (ii) precision and bias reduction in the estimate of optimal exposure, (iii) bias reduction in prediction of the estimated therapeutic benefit at estimated optimal exposure, and (iv) bias reduction in prediction of the estimated benefit of therapeutic drug monitoring as compared with fixed dosing. DCT designs are more informative when describing the exposure-response relationship for drugs with narrow therapeutic indexes and provide a better basis for decision making with regard to dosing strategy
    corecore