50 research outputs found

    Pion and kaon condensation in a 3-flavor NJL model

    Full text link
    We analyze the phase diagram of a three-flavor Nambu-Jona-Lasinio model at finite temperature TT and chemical potentials μu,μd,μs\mu_u, \mu_d, \mu_s. We study the competition of pion and kaon condensation and we propose a physical situation in which kaon condensation could be led only by light quark finite densities.Comment: 21 pages, 8 figures include

    Quark coalescence based on a transport equation

    Get PDF
    We employ the Boltzmann equation for describing hadron production from a quark-gluon plasma (QGP) in ultrarelativistic heavy-ion collisions. We propose resonance formation in quark-antiquark scattering as the dominant meson-production channel, which, in particular, ensures that energy is conserved in the recombination process. This, in turn, facilitates a more controlled extension of hadronization to low transverse momenta (pTp_T), and to address the experimentally observed transition from a hydrodynamic regime to constituent quark-number scaling (CQNS). Based on input distributions for strange and charm quarks with azimuthal asymmetries, v2(pT)v_2(p_T), characteristic for RHIC energies, we recover CQNS at sufficiently high pTp_T, while at low pTp_T a scaling with transverse kinetic energy is found, reminiscent to experiment. The dependence of the transition regime on microscopic QGP properties, i.e. resonance widths and QQ-values in the q+qˉMq+\bar q \to M process, is elucidated.Comment: 7 pages, 6 figure

    A NJL-based study of the QCD critical line

    Full text link
    We employ a 3 flavor NJL model to stress some general remarks about the QCD critical line. The dependence of the critical curve on μq=(μu+μd)/2\mu_q=(\mu_u+\mu_d)/2 and μI=(μuμd)/2\mu_I=(\mu_u-\mu_d)/2 is discussed. The quark masses are varied to confirm that, in agreement with universality arguments, the order of transition depends on the number of active flavors NfN_f. The slope of the critical curve vs. chemical potential is studied as a function of NfN_f. We compare our results with those recently obtained in lattice simulations to establish a comparison among different models.Comment: 17 pages, 5 figure

    QCD in One Dimension at Nonzero Chemical Potential

    Get PDF
    Using an integration formula recently derived by Conrey, Farmer and Zirnbauer, we calculate the expectation value of the phase factor of the fermion determinant for the staggered lattice QCD action in one dimension. We show that the chemical potential can be absorbed into the quark masses; the theory is in the same chiral symmetry class as QCD in three dimensions at zero chemical potential. In the limit of a large number of colors and fixed number of lattice points, chiral symmetry is broken spontaneously, and our results are in agreement with expressions based on a chiral Lagrangian. In this limit, the eigenvalues of the Dirac operator are correlated according to random matrix theory for QCD in three dimensions. The discontinuity of the chiral condensate is due to an alternative to the Banks-Casher formula recently discovered for QCD in four dimensions at nonzero chemical potential. The effect of temperature on the average phase factor is discussed in a schematic random matrix model.Comment: Latex, 23 pages and 5 figures; Added two references and corrected several typo

    Resonance Recombination Model and Quark Distribution Functions in the Quark-Gluon Plasma

    Get PDF
    We investigate the consequences of space-momentum correlations in quark phase-space distributions for coalescence processes at the hadronization transition. Thus far it has been proved difficult to reconcile such correlations with the empirically observed constituent quark number scaling (CQNS) at the Relativistic Heavy-Ion Collider (RHIC). To address this problem we combine our earlier developed quark recombination model with quark phase-space distributions computed from relativistic Langevin simulations in an expanding Quark-Gluon Plasma (QGP). Hadronization is based on resonance formation within a Boltzmann equation which recovers thermal equilibrium and obeys energy conservation in the quark-coalescence process, while the fireball background is adjusted to hydrodynamic simulations of semi-central Au-Au collisions at RHIC. To facilitate the applicability of the Langevin process, we focus on strange and charm quarks. Their interactions in the QGP are modeled using leading-order perturbative QCD augmented by effective Lagrangians with resonances which smoothly merge into hadronic states formed at T_c. The interaction strength is adjusted to reproduce the empirical saturation value for the quark-elliptic flow, v_{2,q}^{sat}~7-8%. The resulting phi and J/\psi elliptic flow recover CQNS over a large range in transverse momentum (p_T) within a few percent. As a function of transverse kinetic energy, both the quark spectra from the Langevin simulations and the meson spectra generated via resonance recombination recover CQNS from zero to at least 3 GeV.Comment: 10 pages, 6 figures; v2: modified title, light-quark results taken out, version accepted for publication in PR

    Ladder-QCD at finite isospin chemical potential

    Get PDF
    We use an effective QCD model (ladder-QCD) to explore the phase diagram for chiral symmetry breaking and restoration at finite temperature with different u,du,d quark chemical potentials. In agreement with a recent investigation based on the Nambu-Jona-Lasinio model, we find that a finite pion condensate shows up for high enough isospin chemical potential μI=(μuμd)/2\mu_{I}=(\mu_{u}-\mu_{d})/2. For small μI\mu_{I} the phase diagram in the (μB,T)(\mu_B,T) plane shows two first order transition lines and two critical ending points.Comment: Typed in RevTex4, pages 12, figures 2. Two references adde

    Native Study of the Behaviour of Magnetite Nanoparticles for Hyperthermia Treatment during the Initial Moments of Intravenous Administration

    Get PDF
    Magnetic nanoparticles (MNPs) present outstanding properties making them suitable as therapeutic agents for hyperthermia treatments. Since the main safety concerns of MNPs are represented by their inherent instability in a biological medium, strategies to both achieve longterm stability and monitor hazardous MNP degradation are needed. We combined a dynamic approach relying on flow field flow fractionation (FFF)-multidetection with conventional techniques to explore frame-by-frame changes of MNPs injected in simulated biological medium, hypothesize the interaction mechanism they are subject to when surrounded by a saline, protein-rich environment, and understand their behaviour at the most critical point of intravenous administration. In the first moments of MNPs administration in the patient, MNPs change their surrounding from a favorable to an unfavorable medium, i.e., a complex biological fluid such as blood; the particles evolve from a synthetic identity to a biological identity, a transition that needs to be carefully monitored. The dynamic approach presented herein represents an optimal alternative to conventional batch techniques that can monitor only size, shape, surface charge, and aggregation phenomena as an averaged information, given that they cannot resolve different populations present in the sample and cannot give accurate information about the evolution or temporary instability of MNPs. The designed FFF method equipped with a multidetection system enabled the separation of the particle populations providing selective information on their morphological evolution and on nanoparticle– proteins interaction in the very first steps of infusion. Results showed that in a dynamic biological setting and following interaction with serum albumin, PP-MNPs retain their colloidal properties, supporting their safety profile for intravenous administration

    Occupational risk of nano-biomaterials: Assessment of nano-enabled magnetite contrast agent using the BIORIMA Decision Support System

    Get PDF
    The assessment of the safety of nano-biomedical products for patients is an essential prerequisite for their market authorization. However, it is also required to ensure the safety of the workers who may be unintentionally exposed to the nano-biomaterials (NBMs) in these medical applications during their synthesis, formulation into products and end-of-life processing and also of the medical professionals (e.g., nurses, doctors, dentists) using the products for treating patients. There is only a handful of workplace risk assessments focussing on NBMs used in medical applications. Our goal is to contribute to increasing the knowledge in this area by assessing the occupational risks of magnetite (Fe3O4) nanoparticles coated with PLGA-b-PEG-COOH used as contrast agent in magnetic resonance imaging (MRI) by applying the software-based Decision Support System (DSS) which was developed in the EU H2020 project BIORIMA. The occupational risk assessment was performed according to regulatory requirements and using state-of-the-art models for hazard and exposure assessment, which are part of the DSS. Exposure scenarios for each life cycle stage were developed using data from literature, inputs from partnering industries and results of a questionnaire distributed to healthcare professionals, i.e., physicians, nurses, technicians working with contrast agents for MRI. Exposure concentrations were obtained either from predictive exposure models or monitoring campaigns designed specifically for this study. Derived No-Effect Levels (DNELs) were calculated by means of the APROBA tool starting from in vivo hazard data from literature. The exposure estimates/measurements and the DNELs were used to perform probabilistic risk characterisation for the formulated exposure scenarios, including uncertainty analysis. The obtained results revealed negligible risks for workers along the life cycle of magnetite NBMs used as contrast agent for the diagnosis of tumour cells in all exposure scenarios except in one when risk is considered acceptable after the adoption of specific risk management measures. The study also demonstrated the added value of using the BIORIMA DSS for quantification and communication of occupational risks of nano-biomedical applications and the associated uncertainties

    A calculation of the QCD phase diagram at finite temperature, and baryon and isospin chemical potentials

    Full text link
    We study the phases of a two-flavor Nambu-Jona-Lasinio model at finite temperature TT, baryon and isospin chemical potentials: μB=(μu+μd)/2\mu_{B}=(\mu_{u}+\mu_{d})/2, μI=(μuμd)/2\mu_{I}=(\mu_{u}-\mu_{d})/2. This study completes a previous analysis where only small isospin chemical potentials μI\mu_{I} were consideredComment: 21 pages, 13 figures included, two more refernces adde

    Degenerate distributions in complex Langevin dynamics: one-dimensional QCD at finite chemical potential

    Full text link
    We demonstrate analytically that complex Langevin dynamics can solve the sign problem in one-dimensional QCD in the thermodynamic limit. In particular, it is shown that the contributions from the complex and highly oscillating spectral density of the Dirac operator to the chiral condensate are taken into account correctly. We find an infinite number of classical fixed points of the Langevin flow in the thermodynamic limit. The correct solution originates from a continuum of degenerate distributions in the complexified space.Comment: 20 pages, several eps figures, minor comments added, to appear in JHE
    corecore