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Abstract

We use an effective QCD model (ladder-QCD) to explore the phase diagram for chiral symmetry breaking and re
at finite temperature with differentu,d quark chemical potentials. In agreement with a recent investigation based o
Nambu–Jona-Lasinio model, we find that a finite pion condensate shows up for high enough isospin chemical
µI = (µu −µd)/2. For smallµI the phase diagram in the(µB,T ) plane shows two first order transition lines and two criti
ending points.
 2003 Published by Elsevier B.V.

PACS: 11.10.Wx; 12.38.-t; 25.75.Nq

1. Introduction

In the last few years the study of QCD at finite density has become rather important. In particular it ha
established that at zero temperature and in the high density limit a color superconducting phase exists (for
see [1]). From a phenomenological point of view there are two areas where finite density is relevant. The fi
is the realm of compact stellar objects where the central density can reach values up to ten times the s
densityρ, with ρ ≈ 0.14 fm−3 evaluated as the inverse of the volume of a sphere of radius 1.2 fm. Since the
temperature of a compact star is much smaller than the typical color superconducting gap (of order of tens
one can safely consider the limitT → 0. The second area can be found in heavy ion physics. However, in this
color superconductivity is not relevant given the large entropy per baryon produced in heavy ion collisio
here another important feature of QCD might be relevant. According to different models [2–5] the phase d
of QCD in the plane(µB,T ) exhibits a tricritical point. Since this point should be located at moderate densit
temperature there is some possibility of observation in heavy ion experiments. Another important point in
ion physics is the fact that in the experimental setting there is a nonzero isospin chemical potential,µI . Studies
at finiteµI have been the object of several papers [6–11] but mainly in the regime of low temperature an
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baryon chemical potential. The first complete study of the phase diagram in the three-parameter space(µB,T ,µI )

has been made in the context of a random matrix model [12]. It has been found that the first order transi
ending at the tricritical point of the caseµI = 0 actually splits in two first order transition lines and correspondin
two crossover regions are present at low values of baryon chemical potential. The existence of this splitting
been shown in the context of a Nambu–Jona-Lasinio model in [13]. It should also be noticed that in [14] t
model has been augmented by the four-fermi instanton interaction relevant in the case of two flavors. Thes
have found that the coupling induced by the instanton interaction between the two flavors might wash com
the splitting of the first order transition line. This happens for values of the ratio of the instanton coupling
NJL coupling of order 0.1–0.15.

In this Letter we will consider the effect of a finite isospin chemical potential in a model (ladder-QCD) w
the existence of a tricritical point was shown several years ago [2]. The reason of doing this analysis in
different from the NJL model is due to the fact that QCD at finite baryon density is difficult to be studied
lattice (however it should be noticed that recently a new technique has been proposed [15] and a first eval
the tricritical point has been given in [16]). It is therefore important to study certain features in different mo
order to have a feeling about their universality. For instance, the existence of a tricritical point seems to en
a characteristic. What we are presenting here is a preliminary study, and therefore we will restrict the an
small isospin chemical potential. The interest for this topic is due to results from lattice simulations and e
theories which show the existence of a phase transition at finiteµI [17–20]. We also ignore the effects from col
superconductivity, since these are present only for temperatures lower than some tens of MeV.

In our model all the three flavors are present, and the relevant instanton effects would give rise to a s
contact interaction. Therefore it is not clear if these effects will wash out the splitting as in the two flavor cas
We will consider this problem in a future work.

2. The model (revisited)

In this section we will review a model that was used several years ago to describe the chiral phase
both at zero temperature [21,22] and at finite temperature and density [2,23]. This model is an approxim
QCD based on the evaluation of the effective potential at two-loop level and on a parametrization of the sel
consistent with the OPE results. The effective action that we evaluate is a slight modification (see for insta
of the Cornwall–Jackiw–Tomboulis action for composite operators [24,25]. We recall here the major steps
calculation. We start from the Cornwall–Jackiw–Tomboulis formula

(1)Γ [S] = −Γ2[S] + Tr

[
S
δΓ2

δS

]
− Tr ln

[
S−1

0 + δΓ2

δS

]
+ counterterms,

where the free fermion inverse propagator is

(2)S−1
0 (p) = ip̂ −m

andΓ2 is the sum of all 2PI diagrams with propagatorS, which has to coincide with the exact fermion propaga
at the absolute minimum ofΓ . ThusS is the dynamical variable in this variational approach. However it turns
useful to tradeS for

(3)Σ = −δΓ2

δS

which coincides with the fermion self-energy at the minimum ofΓ .
In the present model (ladder-QCD) we will make the very rough approximation of evaluatingΓ2 at the lowest

order. That is, we evaluateΓ2 at two-loops with one gluon exchange. The relevant Feynman diagram is giv
Fig. 1. It turns out that this approximation works rather well phenomenologically (see for instance [22]). The
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Fig. 1. The two-loop diagram needed to evaluateΓ2.

at this order the effective action is simply [22]

(4)Γ [Σ] = −Tr ln
(
S−1

0 −Σ
)− 1

2
Tr(SΣ)+ c.t.= −Tr ln

(
S−1

0 −Σ
)+ Γ2[Σ] + c.t.

As in Refs. [21,22], we use the following parametrization forS

(5)S(p) = iA(p)p̂ +B(p) + iγ5C(p).

Then, by working in the Landau gauge, it is possible to show that no renormalization of the wave func
required and also that the Ward identity at this order is satisfied by taking the free quark–gluon vertex
free gluon propagator. We also consider the so-called rigid case, where the strong couplingg is considered fixed
at p2 = M2, whereM is a convenient mass scale to be fixed later. In this way the relation between the
and pseudoscalar contribution toΣ and the termsB,C in Eq. (5) can be easily inverted, leading to the followi
expression for the effective action, fully expressed in terms ofΣ [22]

(6)Γ [Σ] = Γ2[Σ] + Γlog[Σ],
where, separatingΣ =Σs + iγ5Σp

(7)Γ2[Σ] = −8Ω4Ncπ
2

3g2C2

∫
d4q

(2π)4
tr
[
Σs

(
q2)�Σs

(
q2)+Σp

(
q2)�Σp

(
q2)]

with Ω4 being the four-volume andC2 = 4/3 for Nc = 3 the quadratic Casimir ofSU(3)c. BesidesM, alsog is a
parameter of the model. The one-loop term is

(8)Γlog[Σ] = −Tr log
(
S−1

0 −Σ
)= −Tr log

[
ip̂ −m−Σs

(
p2)− iγ5Σp

(
p2)],

where the scalar and pseudoscalar parts of the dynamical variable are matrices inSU(3) flavor space (as well asm),
related to the scalar and pseudoscalar quark condensates through the following equation

(9)Σs

(
p2)+ iγ5Σp

(
p2)= (s + iγ5p)f

(
p2).

The functionf (p2) which contains the momentum dependence of the self-energy will be discussed in a m
The fields

(10)〈sab〉 = − 3C2g
2

4NM3
〈�ΨaΨb〉,

(11)〈pab〉 = − 3C2g
2

4NM3 〈�Ψaiγ5Ψb〉
will be determined by minimizing the effective action. In Eq. (8),m is the mass matrix in flavor space which
taken diagonal

m=
(
mu 0 0
0 md 0

)
.

0 0 ms
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The functionf (p2) will be chosen requiring that it goes to a constant forp → 0 and as 1/p2 (mod log terms) for
large values ofp as suggested by the OPE expansion. By introducing a dimensionless variablex2 = p2/M2 we
will consider the following family of functions

(12)
fN(x

2)

M
= 1+ x2 + x4 + · · · + x2N−2

1+ x2 + x4 + · · · + x2N−2 + x2N .

In the limit N → ∞ we get the function used in [21,22]

(13)
f (x2)

M
= θ

(
1− x2)+ θ

(
x2 − 1

) 1

x2 .

Notice that forx → 0 we get

(14)
fN(x

2)

M
∼ 1− x2N + · · · .

Now, let us consider for simplicity the chiral limit and zero chemical potentials. In this case it is simple to g
mass-shell condition from the one loop term in Eq. (8) (see for instance [2])

(15)p2 + 〈s〉2f 2
N = 0,

where〈s〉 is the field proportional to the scalar condensate (see Eq. (10)). If we want to recover, at leas
infrared regime, a free particle-like dispersion relation (as for instance happens in four fermion theories),
from Eqs. (14) and (15) that we needN � 2. In this Letter we will chooseN = 2. Notice that the choiceN = 1
would lead to the following dispersion relation in the limit of small momenta

(16)p2(1− 2〈s〉2)+M2〈s〉2 + · · · = 0.

This might give rise to problems in the broken phase where the coefficient ofp2 could become negative. Howev
no difficulties arise for the determination of the critical points where〈s〉 � 0. On the contrary the equation of sta
could be affected.

We can thus evaluate explicitly the effective potential

(17)V = Γ

Ω4

which is UV-finite in the chiral limit, whereas it needs to be properly renormalized in the massive case. W
employed the following normalization condition

(18)
∂V

∂(ma〈�ΨaΨa〉)
∣∣∣∣
min

= 1.

In the chiral limit, this requirement is equivalent to the Adler–Dashen relation (see for instance [22]). Here
require the validity of this equation at the values of the quark current masses.

By definingαa =ma/M and

(19)χa = − g2

3M3 〈�ΨaΨa〉
the normalization condition, using Eq. (10), can be written as

(20)
∂Va

∂(αaχa)

∣∣∣∣
min

= −3M4

2π2 c = − 3M4

g2(M)
,
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where we have introduced the parameter

(21)c ≡ 2π2

g2(M)
.

The chemical potential and the temperature dependence are introduced following standard methods [26
example [2]). In particular the chemical potential is introduced from the very beginning via the usual subs
pν → (p0 + iµ, �p) in p̂ appearing in the Dirac operator in Eq. (8). On the other hand the temperature depe
is introduced by substituting top0 the Matsubara frequencyωn = (2n + 1)πT in all the p0 dependent term
appearing in the effective action. The reason for this asymmetrical treatment is that thep dependence in the sel
energies becomes relevant only atp � M whereas, as we shall see we will be interested in chemical pote
lower thanM.

3. Results at finite temperature and density

In order to get the effective action we need to calculate the determinant of the operator appearing in Eq
set to zero the strange quark chemical potentialµs = 0 and defineµI = (µu −µd)/2 andµB = (µu +µd)/2. The
operator is given by the following 3⊗ 3 matrix in flavor space:

(22)


 i(ωn + iµu)γ0 + i �p · �γ −Fu ρf2γ5 0

−ρf2γ5 i(ωn + iµd)γ0 + i �p · �γ − Fd 0

0 0 iωnγ0 + i �p · �γ − Fs


 ,

where we have definedFa = ma + f2χa ; a = u,d, s and with f2 given in Eq. (12) withN = 2. Also p2 =
ω2
n + | �p |2. Hereρ is related to the charged pion condensate

(23)ρ = − g2

6M3

(〈ūγ5d〉 − 〈d̄γ5u〉).
We have directly set to zero the hyper-charged condensates in the strange sector, since we do not e

formation of such condensates forµs = 0. The strange sector thus factorizes and the determination of the
diagram for approximate chiral symmetry restoration is performed by studying the behavior of the ligh〈ūu〉
and〈d̄d〉 quark condensates, independently on the strange quark condensate. To evaluate the effective a
perform the sum over the Matsubara frequencies which solve the mass-shell condition given by the vanishi
determinant in Eq. (22) using standard methods [26]. Although formally straightforward, the calculation is
hard numerical task. Actually, at each integration step on| �p|, we have to solve a twentieth order algebraic equa
in ωn in theu–d sector. The part relative to the strange quark is obviously easier to deal with. The coeffici
this equation depend also on the parametersχu,χd,ρ,µu,µd,mu,md .

Before discussing the results at finite density and temperature let us review how we fix the parameters a
in the effective action. This is done by looking atT = µ = 0. The parameters that we have to fit arec, M, mu,
md , ms . These are obtained by using as input parameters the following physical quantitiesmπ± , mK± , mK0, fπ
andfK . The results of the fit are given in Table 1, whereas the values of the input experimental quantities, t
with the result we get from the fit procedure are given in Table 2.

With these values of the parameters, we find that atT = µ = 0 the quark condensate in chiral limit has the va

(24)〈ψ̄ψ〉0 = −(248 MeV)3

whereas in the massive case

(25)〈ūu〉 = −(251 MeV)3, 〈d̄d〉 = −(253 MeV)3, 〈s̄s〉 = −(305 MeV)3



222 A. Barducci et al. / Physics Letters B 564 (2003) 217–224

)

iral

The
nce, the

line),

in

at for
l, say
2)

efore the
light

o
ical

uld not
Table 1
Fit of the parameters

Parameters Fitted values

M 529 MeV
c 1.0
mu 4.4 MeV
md 6.2 MeV
ms 110 MeV

Table 2
Comparison between the values of the input parameters as obtained from the fit and the experimental results

Input parameters Fitted values (MeV) Experimental values (MeV

mπ± 139 139.6
mK± 494 493.7
mK0 499 497.7
fπ 92 92.4
fK 105 113

and, by defining the constituent quark masses a la Politzer [27]

(26)Mconst= �Σ(p2 = 4M2
const

)
we get

(27)Ms = 385 MeV, Mu,d = 256 MeV,

where, here and in the following the light quarks have been taken degenerate with massm̂ = (mu + md)/2 =
5.3 MeV.

From the general study atT = µ = 0 and in the chiral limit, one finds also that in order to break the ch
symmetry one must have

(28)c < 1.37.

This condition is satisfied by our choice of parameters.
WhenµI = 0 it was shown that in the model discussed in [2] there is a tricritical point in the chiral limit.

model we are presenting here is essentially the same model with some slight modifications, as, for insta
choice of the functionf2(x). However the tricritical point is still present as it can be seen from Fig. 2 (central
obtained with the choice of parameters of Table 1.

A complete analysis of the full three parameter space(µB,T ,µI ) has not yet been completed especially
relation with the pion (and hyper-charged) condensate. We have examined the caseT = µB = 0 and we have
found that there is a phase transition indicated by a finite pion condensate starting atµI = 70 MeV. Since in
our modelmπ ≈ 140 MeV we agree with the results found in the literature [12,17–20]. We found also th
m = 0 the criticalµI is zero. Therefore we will limit our considerations at small isospin chemical potentia
µI = 30 MeV, where we expect the pion condensateρ to vanish. In this situation the determinant in Eq. (2
factorizes and the effective action is given by a sum of three independent terms, one for each flavor. Ther
action is the same as forµI = 0, with each flavor evaluated at its own chemical potential. It follows that the
flavor terms show the same tricritical structure exhibited from the central line in Fig. 2 forµI = 0. Consequently
the phase diagram we obtain for a small, fixed isospin chemical potential (µI = 30 MeV) is described by the tw
side lines in Fig. 2 with each flavoru andd showing the same structure as the central line but with a split chem
potentialµu,d = µB ±µI . Notice also that although the figure extends up to zero temperature, this part sho
be taken too seriously due to the existence of color superconductivity.
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Fig. 2. Phase diagram for chiral symmetry in the(µB,T ) plane. ForµI = 0 (central line), the cross-over transition line starts from the p
PT = (0,135) and ends at the pointE = (240,97). The line betweenE and the pointPµ = (325,0) is the line for the first order transitio
with discontinuities in the〈ūu〉 and〈d̄d〉 condensates. ForµI = 30 MeV (side lines), the two cross-over transition lines start from the p
PT = (0,135) and end at the pointsEu = (210,97) andEd = (270,97). The lines betweenEu and the pointPµ

u = (295,0) and betweenEd

and the pointPµ
d = (355,0) are the lines for the first order transitions with discontinuities in the〈ūu〉 and〈d̄d〉 condensates, respectively.

4. Conclusions

In this Letter we have discussed an approximate model of QCD (ladder-QCD) at finite temperature and d
In particular we have considered the experimentally important situation of a nonvanishing isospin ch
potential. This situation has been already explored by various authors previously and we confirm, in pa
the results found in [12] and [13] about the splitting of the first order transition line in the plane(µB,T ), for
smallµI . As pointed out in [13] this result could be relevant for ion physics since the first order transition
split symmetrically with respect to the original line atµI = 0. This implies a reduction of the value of the bary
chemical potential at the tricritical point of an amount given byµI , making easier the possibility of discovering
experimentally. Since it is very difficult to perform first principle analysis of QCD at finite baryon density, we
that it is important to show that certain features as the existence of the tricritical point and the possible s
of the first order transition line are common to several models. This suggests that these features migh
some universal character. However we should stress that the result of the splitting of the first order transi
is strictly related to the factorization in flavor space. For instance, in the two flavor case, the four-fermi inte
due to the instanton effects leads to a mixing of the flavors that, if sufficiently large, might wash out the m
We think that this point needs further analysis in the more complete scheme with three flavors.

References

[1] K. Rajagopal, F. Wilczek, in: M. Shifman (Ed.), At the Frontier of Physics/Handbook of QCD, Vol. 3, World Scientific, Singapore, p
hep-ph/0011333.

[2] A. Barducci, R. Casalbuoni, S. De Curtis, R. Gatto, G. Pettini, Phys. Lett. B 231 (1989) 463;
A. Barducci, R. Casalbuoni, S. De Curtis, R. Gatto, G. Pettini, Phys. Rev. D 41 (1990) 1610.

[3] T. Hatsuda, T. Kunihiro, Phys. Rep. 247 (1994) 221.
[4] M.A. Halasz, A.D. Jackson, R.E. Shrock, M.A. Stephanov, J.J. Verbaarschot, Phys. Rev. D 58 (1998) 096007, hep-ph/9804290
[5] J. Berges, K. Rajagopal, Nucl. Phys. B 538 (1999) 215, hep-ph/9804233.
[6] P.F. Bedaque, Nucl. Phys. A 697 (2002) 569, hep-ph/9910247.
[7] M.G. Alford, J.A. Bowers, K. Rajagopal, Phys. Rev. D 63 (2001) 074016, hep-ph/0008208.
[8] M. Buballa, M. Oertel, Phys. Lett. B 457 (1999) 261, hep-ph/9810529.
[9] F. Neumann, M. Buballa, M. Oertel, Nucl. Phys. A 714 (2003) 481, hep-ph/0210078.

[10] A. Steiner, M. Prakash, J.M. Lattimer, Phys. Lett. B 486 (2000) 239, nucl-th/0003066.



224 A. Barducci et al. / Physics Letters B 564 (2003) 217–224
[11] A.W. Steiner, S. Reddy, M. Prakash, Phys. Rev. D 66 (2002) 094007, hep-ph/0205201.
[12] B. Klein, D. Toublan, J.J. Verbaarschot, hep-ph/0301143.
[13] D. Toublan, J.B. Kogut, hep-ph/0301183.
[14] M. Frank, M. Buballa, M. Oertel, hep-ph/0303109.
[15] Z. Fodor, S.D. Katz, Phys. Lett. B 534 (2002) 87, hep-lat/0104001.
[16] Z. Fodor, S.D. Katz, JHEP 0203 (2002) 014, hep-lat/0106002.
[17] J.B. Kogut, D.K. Sinclair, Phys. Rev. D 66 (2002) 014508, hep-lat/0201017.
[18] J.B. Kogut, D.K. Sinclair, Phys. Rev. D 66 (2002) 034505, hep-lat/0202028.
[19] D.T. Son, M.A. Stephanov, Phys. Rev. Lett. 86 (2001) 592, hep-ph/0005225.
[20] D. Toublan, J.J. Verbaarschot, Int. J. Mod. Phys. B 15 (2001) 1404, hep-th/0001110.
[21] R. Casalbuoni, S. De Curtis, D. Dominici, R. Gatto, Phys. Lett. B 140 (1984) 228;

R. Casalbuoni, S. De Curtis, D. Dominici, R. Gatto, Phys. Lett. B 140 (1984) 357.
[22] A. Barducci, R. Casalbuoni, S. De Curtis, D. Dominici, R. Gatto, Phys. Lett. B 147 (1984) 460;

A. Barducci, R. Casalbuoni, S. De Curtis, D. Dominici, R. Gatto, Phys. Rev. D 38 (1988) 238.
[23] A. Barducci, R. Casalbuoni, G. Pettini, R. Gatto, Phys. Rev. D 49 (1994) 426.
[24] R. Jackiw, Phys. Rev. D 9 (1974) 1686.
[25] J.M. Cornwall, R. Jackiw, E. Tomboulis, Phys. Rev. D 10 (1974) 2428.
[26] L. Dolan, R. Jackiw, Phys. Rev. D 9 (1974) 3320.
[27] D. Politzer, Nucl. Phys. B 117 (1976) 397.


	Ladder-QCD at finite isospin chemical potential
	Introduction
	The model (revisited)
	Results at finite temperature and density
	Conclusions
	References




