2,158 research outputs found

    Advanced Gas Turbine (AGT): Power-train system development

    Get PDF
    Technical work on the design and effort leading to the testing of a 74.5 kW (100 hp) automotive gas turbine is described. The general effort was concentrated on building an engine for test starting in July. The buildup progressed with only routine problems and the engine was delivered to the test stand 9 July. In addition to the engine build effort, work continued in selected component areas. Ceramic turbine parts were built and tested. Burst tests of ceramic rotors show strengths are approaching that achieved in test bars; proof testing is required for acceptable strength ceramic vanes. Over 25 hours was accumulated on the combustor rig in three test modes: pilot nozzle only, start nozzle, and main nozzle operation. Satisfactory ignition was achieved for a wide range of starting speeds and the lean blowout limit was as low as 0.06 kg/b (0.14 lb/hr). Lean blowout was more a function of nozzle atomization than fuel/air ratio. A variety of cycle points were tested. Transition from start nozzle flow to main nozzle flow was done manually without difficulty. Regenerator parts were qualification tested without incident and the parts were assembled on schedule. Rig based performance matched first build requirements. Repeated failures in the harmonic drive gearbox during rig testing resulted in that concept being abandoned for an alternate scheme

    Temporal and spatial variations of gyne production in the ant Formica exsecta

    Get PDF
    Social insects have become a general model for tests of sex allocation theory. However, despite tremendous interest in the topic, we still know remarkably little about the factors that cause dramatic differences in sex allocation among local populations. A number of studies have suggested that environmental factors may influence sex allocation in ant populations. In polygynous (multiple queens per nest) populations of the ant Formica exsecta, sex allocation is extremely male biased at the population level, with only a small proportion of nests producing any gynes (female reproductive brood). We analysed the proportion of gyne-producing nests in 12 F. exsecta populations during three successive breeding seasons and found considerable temporal and spatial variability in the proportion of gyne-producing nests. The populations differed in a number of characteristics, including elevation, nest density, size of the nest mound, and number of nests per population. However, the proportion of gyne-producing nests was not associated with any of these geographic and demographic variables. Moreover, differences between populations in the production of gynes were not consistent between years. Thus, the proportion of gyne-producing nests appears to vary stochastically, perhaps because of stochastic variations in environmental factors. For example, year-to-year variations in the proportion of gyne-producing nests were associated with differences in spring weather conditions between years. The finding that gyne production varies greatly between years suggests that it may not always be adaptive at a local scale

    Web 2.0 and Social Constructivism

    Get PDF
    The emergence of Web 2.0 and its related technologies has the potential to dramatically alter current educational practices. Because users now have the ability to rapidly create content and to engage in social interactions through the World Wide Web, we argue that Web 2.0 supports socially mediated, constructivist learning environments in ways that are becoming seamless. In this chapter, we describe the tenets of social constructivism and then discuss three technologies associated with Web 2.0 and explore how teachers and students could utilize them to promote constructivist learning

    Derivation of an Analytical Model to Calculate Junction Depth in HgCdTe Photodiodes

    Get PDF
    Presents an enhanced analytical model to calculate junction depth and Hg interstitial profile during n-on-p junction formation in HgCdTe photodiodes. Detailed information on the enhanced model; Function of the model; Information on HgCdTe; Detailed information on how the model was obtained

    The Mechanical Properties of Individual, Electrospun Fibrinogen Fibers

    Get PDF
    We used a combined atomic force microscope (AFM)/fluorescence microscope technique to study the mechanical properties of individual, electrospun fibrinogen fibers in aqueous buffer. Fibers (average diameter 208 nm) were suspended over 12 μm-wide grooves in a striated, transparent substrate. The AFM, situated above the sample, was used to laterally stretch the fibers and to measure the applied force. The fluorescence microscope, situated below the sample, was used to visualize the stretching process. The fibers could be stretched to 2.3 times their original length before breaking; the breaking stress was 22·106 Pa. We collected incremental stress-strain curves to determine the viscoelastic behavior of these fibers. The total stretch modulus was 16·106 Pa and the relaxed, elastic modulus was 6.7·106 Pa. When held at constant strain, electrospun fibrinogen fibers showed a fast and slow stress relaxation time of 3 and 56 seconds. Our fibers were spun from the typically used 90% 1,1,1,3,3,3-hexafluoro-2-propanol (90-HFP) electrospinning solution and resuspended in aqueous buffer. Circular dichroism spectra indicate that alpha-helical content of fibrinogen is ~70% higher in 90-HFP than in aqueous solution. These data are needed to understand the mechanical behavior of electrospun fibrinogen structures. Our technique is also applicable to study other, nanoscopic fibers

    Neurobiological origin of spurious brain morphological changes: A quantitative MRI study.

    Get PDF
    The high gray-white matter contrast and spatial resolution provided by T1-weighted magnetic resonance imaging (MRI) has made it a widely used imaging protocol for computational anatomy studies of the brain. While the image intensity in T1-weighted images is predominantly driven by T1, other MRI parameters affect the image contrast, and hence brain morphological measures derived from the data. Because MRI parameters are correlates of different histological properties of brain tissue, this mixed contribution hampers the neurobiological interpretation of morphometry findings, an issue which remains largely ignored in the community. We acquired quantitative maps of the MRI parameters that determine signal intensities in T1-weighted images (R1 (=1/T1), R2 *, and PD) in a large cohort of healthy subjects (n = 120, aged 18-87 years). Synthetic T1-weighted images were calculated from these quantitative maps and used to extract morphometry features-gray matter volume and cortical thickness. We observed significant variations in morphometry measures obtained from synthetic images derived from different subsets of MRI parameters. We also detected a modulation of these variations by age. Our findings highlight the impact of microstructural properties of brain tissue-myelination, iron, and water content-on automated measures of brain morphology and show that microstructural tissue changes might lead to the detection of spurious morphological changes in computational anatomy studies. They motivate a review of previous morphological results obtained from standard anatomical MRI images and highlight the value of quantitative MRI data for the inference of microscopic tissue changes in the healthy and diseased brain. Hum Brain Mapp 37:1801-1815, 2016. © 2016 The Authors. Human Brain Mapping Published by Wiley Periodicals, Inc
    corecore