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Abstract: The high gray-white matter contrast and spatial resolution provided by T1-weighted mag-
netic resonance imaging (MRI) has made it a widely used imaging protocol for computational anatomy
studies of the brain. While the image intensity in T1-weighted images is predominantly driven by T1,
other MRI parameters affect the image contrast, and hence brain morphological measures derived
from the data. Because MRI parameters are correlates of different histological properties of brain tis-
sue, this mixed contribution hampers the neurobiological interpretation of morphometry findings, an
issue which remains largely ignored in the community. We acquired quantitative maps of the MRI
parameters that determine signal intensities in T1-weighted images (R1 (51/T1), R2*, and PD) in a
large cohort of healthy subjects (n 5 120, aged 18–87 years). Synthetic T1-weighted images were calcu-
lated from these quantitative maps and used to extract morphometry features—gray matter volume
and cortical thickness. We observed significant variations in morphometry measures obtained from
synthetic images derived from different subsets of MRI parameters. We also detected a modulation of
these variations by age. Our findings highlight the impact of microstructural properties of brain tis-
sue—myelination, iron, and water content—on automated measures of brain morphology and show
that microstructural tissue changes might lead to the detection of spurious morphological changes in
computational anatomy studies. They motivate a review of previous morphological results obtained
from standard anatomical MRI images and highlight the value of quantitative MRI data for the infer-
ence of microscopic tissue changes in the healthy and diseased brain. Hum Brain Mapp 37:1801–1815,
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INTRODUCTION

In the past two decades computational anatomy
emerged as a useful tool for studying non-invasively the
healthy and diseased brain [Ashburner, 2009]. The
computer-based analysis of structural magnetic resonance
imaging (MRI) data provides estimates of local brain vol-
ume, shape and cortical thickness that are indicative of
underlying (patho)physiological processes [Ashburner
et al., 2003; Burton et al., 2004; Fischl et al., 2002; Hibar
et al., 2015; Rektorova et al., 2014; Ryan et al., 2013; Qiu
et al., 2014]. From a simplistic neurobiological point of
view, a loss in gray matter volume or cortical thickness is
interpreted as a sign of neuronal loss, while an increase is
considered as a correlate of use-dependent brain plasticity
[Draganski et al., 2014; Zatorre, 2013]. While issues con-
cerning MRI data processing and statistical analysis have
been largely resolved [Draganski and Kherif, 2013; Thomas
and Baker, 2013], morphological brain changes detected
from standard (e.g. T1-weighted) anatomical MRI data
may reflect true macroscopic morphological brain changes
or may be the spurious results of biophysical processes
taking place at the microstructural scale [Weiskopf et al.,
2015]. The characterization of the latter processes—of pri-
mary interest in neuroscience research—requires specific
MRI biomarkers of brain tissue microstructure.

Visual inspection of MRI and histological data illustrates
the high correlation between MRI contrast and region-
specific degrees of myelination [Fatterpekar et al., 2002;
Fukunaga et al., 2010; Geyer et al., 2011]. Quantitative MRI
(qMRI) provides estimates of the parameters of the MRI
signal that are valuable biomarkers of brain tissue micro-
structure [Geyer and Turner, 2011]. A high correlation
between iron concentration and the effective transverse
relaxation rate R2* (51/T2*) has been observed in ferritin-
rich structures [Gelman et al., 1999; Langkammer et al.,
2010; Yao et al., 2009]. The dominant contribution of mye-
lin to the parameter R1 (51/T1) has been also been estab-
lished [Rooney et al., 2007] except in subcortical brain
areas with high levels of iron [Helms et al., 2009; Lorio
et al., 2014]. Multivariate analysis have provided the most
compelling evidence for the relationship between MRI
parameters and tissue microstructure over the entire brain
[Callaghan et al., 2015a]. Beyond this empirical evidence,
current efforts are shedding a more detailed and compre-
hensive light on this relationship with the aim to charac-
terize tissue microstructure from MRI data—in vivo
histology [Dinse et al., 2015; St€uber et al., 2014]. The com-
bination of MRI data with different contrast mechanisms—
each drawing on complementary features of tissue micro-

structure, may prove to be an essential step towards that
goal [Mohammadi et al., 2015; Stikov et al., 2015]. Whole-
brain high resolution qMRI maps have allowed myeloarch-
itectonic studies of the cerebral cortex in vivo at 3 T and 7
T, highlighting densely myelinated primary and extrastri-
ate visual areas exhibiting a high degree of overlap with
topological fMRI maps [Cohen-Adad, 2014; Dick et al.,
2012; Lutti et al., 2014; Sereno et al., 2013]. The remarkable
similarity of the changes in R1 values across the cortical
layer with histological data highlights the sensitivity of
qMRI to subtle variations in myeloarchitecture, particu-
larly at high field strength, offering promising perspectives
for the parcellation of the cerebral cortex from in vivo MRI
data [Lutti et al., 2014; Waehnert et al., 2016]. In conjunc-
tion with image segmentation, image registration and
intra-cortical surface extraction techniques that draw on
the microstructural information provided by qMRI [Bazin
et al., 2014; Tardif et al., 2015b; Waehnert et al., 2014,
2016], the combination of high-resolution quantitative and
functional MRI data opens new perspectives for the study
of brain structure [Helbling et al., 2015; Olman et al., 2012;
Polimeni et al., 2010; Turner and Geyer, 2014].

qMRI provides quantitative and specific biomarkers of
tissue microstructure with enhanced sensitivity to the bio-
physical changes taking place in the healthy and diseased
brain [Deoni et al., 2008; Focke et al., 2011; Tardif et al.,
2015a; Weiskopf et al., 2013]. qMRI data has been
employed for the study of pathological conditions such as
multiple sclerosis [Khalil et al., 2015; Louapre et al., 2015],
spinal cord injury [Freund et al., 2013] and Alzheimer’s
Disease [Langkammer et al., 2014]. The establishment of
normative qMRI values for the healthy and diseased brain
motivates the characterization with qMRI of brain changes
associated with healthy ageing, highlighting the associated
demyelination and iron deposition processes [Callaghan
et al., 2014; Draganski et al., 2011; Ghadery et al., 2015;
Lorio et al., 2014]. Recent technological advances allowing
a reduction of the acquisition time [Langkammer et al.,
2015; Xu et al., 2013] and of the impact of subject motion
[Callaghan et al., 2015b; Zaitsev et al., 2006] are expected
to facilitate the use of qMRI techniques on clinical
populations.

Despite the benefits of qMRI highlighted above, stand-
ard anatomical MRI data (e.g., T1-weighted, T2-
weighted. . .) remain the workhorse of the majority of com-
putational neuroscience studies. While the contrast in
standard anatomical MRI images is mainly driven by one
MRI parameter, contributions from other parameters are
also present. The dependence of these MRI parameters on
different histological tissue properties hinders the

r Lorio et al. r

r 1802 r



interpretation at the microstructural level of computational
anatomy results obtained from standard anatomical
images. The aim of this study is to illustrate this lack of
specificity and to demonstrate how microstructural proc-
esses in brain tissue might lead to the spurious detection
of tissue volume changes in morphometry studies. Here
we will focus on magnetization-prepared-rapid-gradient-
echo (MPRAGE) T1-weighted (T1w) data, which has been
extensively used due to its high gray-white matter contrast
at high image resolution [Mugler and Brookeman, 1990].
While the contrast in MPRAGE images is predominantly
driven by T1, proton density (PD 2 concentration of MRI-
observable water) and R2* also have an impact described
by the MPRAGE signal equations (e.g. [Deichmann et al.,
2000; Helms et al., 2008a]). We acquired whole-brain quan-
titative maps of R1, R2*, and PD in a large cohort of
healthy subjects. Using the analytical expression of the
MPRAGE signal we computed synthetic T1w images
based on subsets of these maps [Deichmann et al., 2000;
N€oth et al., 2015]. Manipulation of the contrast in synthetic
T1w images has been used recently for the visualisation of
brain tumours [N€oth et al., 2015]. Improved visibility of
tumours was shown from synthetic images computed
from the parameter T1 only, highlighting the relationship
between tissue microstructure and MRI contrast. We
extend this approach to the quantitative analysis of the
neurobiological changes underlying apparent volume
changes in morphometric studies. The synthetic images
were processed using identical state-of-the art computa-
tional anatomy algorithms to obtain voxel-based measures
of gray matter volume or vertex-based estimates of cortical
thickness. We investigated the effect of the MRI parame-
ters on the estimation of volume and thickness in the
framework of voxel-based morphometry (VBM) and
surface-based analysis.

MATERIAL AND METHODS

Subjects

One hundred twenty healthy adults (56 men, age range
18–78 years, mean 39 6 16 years), (64 women, age range
18–85 years, mean 40 6 19 years) were examined on a 3 T
whole-body MRI system (Magnetom Prisma, Siemens
Medical Systems, Germany), using a 64-channel RF receive
head coil and body coil for transmission. On visual inspec-
tion study participants showed neither macroscopic brain
abnormalities, i.e. major atrophy, nor signs of overt vascu-
lar pathology—i.e. microbleeds and white matter lesions.
Participants with extended atrophy or with white matter
hyperintensities (WMH) of grade 2 or more by the Schel-
tens rating scale [Scheltens et al., 1993] were not included.
Informed written consent was obtained prior to study
according to the approval requirements of the local Ethics
committee.

Data Acquisition

The whole-brain protocol for quantitative mapping of
R1, R2*, and PD comprised two multiecho 3D fast low
angle shot (FLASH) acquisitions [Helms et al., 2008a,;
Weiskopf et al., 2013], one radio frequency (RF) transmit
field map and one static magnetic (B0) field map [Lutti
et al., 2010, 2012]. The FLASH datasets were acquired with
predominantly proton density-weighted (PDw) and T1w
contrast with appropriate choice of repetition time (TR)
and flip angle (a) (PDw: TR/a 5 24.5 ms/68; T1w: TR/
a 5 24.5 ms/218). Multiple gradient echoes were acquired
for each FLASH acquisition with alternating readout polar-
ity at eight equidistant echo time (TE) between 2.34 ms
and 18.72 ms. The image resolution was 1 mm isotropic,
the field of view was 256 3 240 3 176 mm and the matrix
size—256 3 240 3 176. Parallel imaging was used along
the phase-encoding (PE) direction (acceleration factor 2
GRAPPA reconstruction [Griswold et al., 2002]), 6/8 par-
tial Fourier was used in the partition direction. Three-
dimensional echo-planar imaging (EPI) spin-echo (SE) and
stimulated echo (STE) images were used to calculate maps
of the transmit field B11 [Lutti et al., 2010, 2012] and cor-
rect for the effect of RF transmit inhomogeneities on the
quantitative maps [Helms et al., 2009; Helms and Dechent,
2009; Weiskopf et al., 2013]. To correct the RF transmit
field maps for geometric distortion and off-resonance
effects, a map of B0 was acquired using a two-dimensional
double-echo FLASH sequence [Lutti et al., 2010, 2012]. The
total acquisition time was 18 min.

Calculation of the quantitative maps from the acquired
data was implemented with the Voxel-Based Quantifica-
tion toolbox [Draganski et al., 2011] running under SPM12
(Wellcome Trust Centre for Neuroimaging, London, UK;
http://www.fil.ion.ucl.ac.uk/spm) and Matlab 7.11 (Math-
works, Sherborn, MA, www.mathworks.com). The R2*
maps were calculated from the regression of the log-signal
of the eight PD-weighted (PDw) echoes. The R1 and PD
maps were computed as described in [Helms et al., 2008a],
using the PDw and T1w images with minimal echo time
(TE 5 2.34 ms) in order to minimize R2* bias on the R1 and
PD estimates. The R1 maps were corrected for local RF
transmit field inhomogeneities [Lutti et al., 2012] and
imperfect RF spoiling using the approach described by
[Preibisch and Deichmann, 2009].

Synthetic MPRAGE T1-weighted images

Synthetic MPRAGE images were created from the
acquired R1, PD, and R2* maps using the MPRAGE signal
equation [Deichmann et al., 2000; N€oth et al., 2015]:

T1w R1;PD;R2�ð Þ5 PD � sin að Þ � exp 2TE � R�2
� �

� E4 �
122�E11E1 � E2

11E1 � E2 � E3
1T�1 �R1 �

11E1 � E2 � E32E42E4�E1 � E2

11E1 � E2 � E3

� �

(1)
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with T�15 R12
1

ES
� ln cos að Þð Þ

� �21

; E15exp 2TI�R1ð Þ;

E25exp 2TD � R1ð Þ; E35exp 2
s

T�1

� �
; E45exp 2

s
2 � T�1

� �

where a (nominal RF excitation flip angle), TE, ES (echo
spacing), TI (inversion time), s (readout duration), and TD
(delay time) are parameters of the simulated MPRAGE
acquisition. PD, R�2, and R1 are the MRI parameters of
brain tissue and are provided by the quantitative maps
described above.

The acquisition parameters of the synthetic MPRAGE
images were set according to [Tardif et al., 2009] to yield
optimal gray-white matter contrast (a 5 98; ES 5 9.9 ms;
TI 5 960 ms; s 5 176 3 ES; TR 5 2,420 ms).

Equation (1) represents the product of three terms that
contain the contribution of each MRI parameter to the syn-
thetic images:

f PDð Þ5PD

f R2�ð Þ5exp 2TE � R2�ð Þ

f R1ð Þ5E4 �
122�E11E1 � E2

11E1 � E2 � E3
1T�1 �R1 �

11E1 � E2 � E32E42E4�E1 � E2

11E1 � E2 � E3

Each of these contributions may be removed from the
synthetic T1w images by setting the corresponding term to
1. The synthetic images used in the current study are
listed in Table I with the MRI parameters used in the cor-
responding signal equation.

Data Processing

Gray matter estimates—Voxel-based morphometry

For VBM analysis, all synthetic MPRAGE T1w images
were processed independently with the same default set-
tings and classified into different tissue classes: gray mat-
ter (GM), white matter (WM), cerebral-spinal fluid (CSF)
and non-brain tissue, using the “unified segmentation”
approach in SPM12 [Ashburner and Friston, 2005]. Aiming
at optimal anatomical precision we applied the diffeomor-
phic registration algorithm DARTEL [Ashburner, 2007].
The warped GM probability maps derived from the syn-
thetic MPRAGE T1w images were scaled by the Jacobian

determinants of the deformation fields to account for local
compression and expansion due to linear and nonlinear
transformation [Ashburner and Friston, 2000]. The GM
maps were then smoothed by convolution with an iso-
tropic Gaussian kernel of 6 mm full-width-at-half-
maximum (FWHM).

Cortical thickness estimates—Surface-based analysis

For surface-based analysis all synthetic MPRAGE T1w
images were processed independently with the same
default settings to measure cortical thickness using the
open source FreeSurfer package (http://surfer.nmr.mgh.
harvard.edu/). Briefly, image processing included removal
of non-brain tissue using a hybrid watershed/surface
deformation procedure [S�egonne et al., 2004], automated
Talairach transformation, extraction of the subcortical WM
and deep GM structures (including hippocampus, amyg-
dala, caudate, putamen, ventricles) [Fischl et al., 2004],
intensity normalisation [Sled et al., 1998] and tessellation
of the GM/WM boundary. The GM/WM and GM/CSF
borders were placed where the highest intensity gradients
defined the transition to the other tissue class [Fischl and
Dale, 2000; S�egonne et al., 2007]. Cortical thickness was
calculated as the shortest distance from the GM/WM
boundary to the GM/CSF boundary at each vertex on the
tessellated surface [Fischl and Dale, 2000]. The cortical
thickness maps were warped to standardised space and
smoothed by convolution with an isotropic Gaussian ker-
nel of 15 mm FWHM.

Statistical Analysis

Main effect of MRI parameters

Gray matter volume and cortical thickness were ana-
lysed separately using a mass-univariate approach and
flexible factorial design. The morphometric features
extracted from the different types of synthetic MPRAGE
T1w images (T1w(R1), T1w(R1,PD), T1w(R1, R2*),
T1w(R1,PD, R2*)) were included into the design matrix in
separate columns that indicated the type of synthetic T1w
data used. Regional differences were examined creating
voxel-wise or vertex-wise statistical parametric maps using
the General Linear Model (GLM) and the Random Field
Theory implemented in SPM for the VBM analysis, and
SurfStat for the surface based analysis (http://www.math.
mcgill.ca/keith/surfstat/). One-tailed T-statistic was com-
puted to detect differences over a whole-brain search vol-
ume. The search volume for the GM estimates was
defined using the automated anatomical labelling (AAL),
human brain atlas [Tzourio-Mazoyer et al., 2002], the
(SUIT) atlas of cerebellum and brainstem [Diedrichsen,
2006] and the basal ganglia human area template
(BGHAT) [Prodoehl et al., 2008]. We applied a statistical
threshold at P< 0.05 after family-wise error (FWE)

TABLE I. Types of synthetic MPRAGE images computed

from the maps of MRI parameters using the

corresponding signal equation

MPRAGE synthetic
image

MRI
parameters Equation

T1w(R1) R1 f R1ð Þ � sin að Þ
T1w(R1,PD) R1, PD f R1ð Þ � f PDð Þ � sin að Þ
T1w(R1,R2*) R1, R2* f R1ð Þ � f R�2

� �
� sin að Þ

T1w(R1,PD,R2*) R1, PD, R2* f R1ð Þ � f PDð Þ � f R�2
� �

� sin að Þ
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correction for multiple comparisons over the whole search
volume or surface.

Linear and nonlinear age effect

To investigate age-dependent local effects on GM vol-
ume and cortical thickness, the concatenated morphomet-
ric features were also split into two design matrices—one
for GM volume and the other for cortical thickness includ-
ing age and gender as additional variables. We used a
polynomial model to identify voxels/vertices in which the
variance in GM volumes and cortical thickness was better
explained by a quadratic rather than a linear function of
age. The model included regressors for the quadratic and
original age values, which were mean centred. Recent
studies on brain aging that included nonlinear analysis
supported the use of polynomial models up to degree 3
[Walhovd et al., 2011] because polynomials with higher
degrees or exponential functions can be highly accurate.

Gray-White Matter Contrast Analysis

To investigate the variation of morphological measures
across synthetic T1w images, we used the image contrast
between white and gray matter contrast calculated as follows:

C5
WMInt2GMInt

WMInt1GMIntð Þ=2
(2)

where WMInt and GMInt are the WM and GM intensities of
a given synthetic T1w image. We measured WM intensity
at 1 mm subjacent to the gray-white matter border along
the surface normal and we sampled GM intensity at 35%
through the thickness of the cortical ribbon, normal to the
GM-WM border. The 35% sampling procedure allowed us
to be conservatively close to the GM-WM border and to
adjust the sampling distance in regions of low cortical
thickness (as opposed to using a constant value across the
entire border which could be problematic for thinner corti-
cal areas). This sampling procedure has been used previ-
ously to study contrast change in ageing [Salat et al., 2009].

We used a linear model to investigate the correlation
between the cortical thickness changes and the variation of
gray-white matter contrast across synthetic T1w MPRAGE
images. The model was implemented vertex-wise accord-
ing to the following equation:

DCt5b � DC1 e (3)

where DCt and DC are respectively the changes in cortical
thickness and GM-WM contrast between synthetic T1w
images, b is the linear coefficient estimated for every vertex,
and e represents the residuals of the model. Both DC and DCt
were smoothed by convolution with an isotropic Gaussian
kernel of 15 mm FWHM. To assess the quality of parameter
estimation we computed T-values for the linear coefficient,
testing against the null hypotheses that b was equal to zero.
The statistical significance level was set at PFWE< 0.05.

The variations across synthetic images of the contrast
calculated using Eq. (2) were examined by comparison
with the theoretical predictions obtained from the signal
equations. For example the contrast change between
T1w(R1) and T1w(R1, PD) images can be derived from Eq.
(1) and (2):

CT1w R1ð Þ2CT1w R1;PDð Þ5
4 RPD21ð ÞRT1w R1ð Þ

11RPDð Þ 11RT1w R1ð Þ
� � (4)

where RPD and RT1w(R1) are the ratio between gray and
white matter intensity of the PD and T1w(R1) values
respectively. Equation (4) lays down the relationship
between the contrast variation across the types of synthetic
images and the MRI-histological properties of the tissue. It
may therefore be used to infer the microstructural mecha-
nisms driving an observed contrast change. The white and
gray matter values were sampled according to the afore-
mentioned procedure for contrast estimation [Eq. (2)].

RESULTS

MRI Parameters Main Effects

Figure 1 shows an example set of synthetic T1w images
calculated from the acquired quantitative MRI data. On
visual inspection putamen, pallidum, and thalamus show
higher contrast against the surrounding tissue on the
T1w(R1, R2*) compared with the other synthetic images
(see Fig. 1b). As shown by Figure 1c, the sensorimotor and
the visual cortex exhibited higher contrast on T1w(R1) and
T1w(R1, R2*) images than on T1w(R1,PD) and T1w(R1,PD,
R2*), highlighting the role of PD in reducing GM-WM con-
trast in these regions.

The GM volumes extracted from T1w(R1) images were
significantly higher than those obtained from T1w(R1,PD)
images in the thalamus, the dorsolateral part of putamen,
the substantia nigra and over the entire cortical ribbon
(see Fig. 2). We note that despite the widespread signifi-
cant results covering the whole cortex, there were local
differences in T-values and effect size in the sensorimotor
and the visual cortex (see Fig. 2) consistent with the reduc-
tion in regional image contrast due to PD (Fig. 1c).

Our statistical analysis of the impact of the R2* parame-
ter on GM volume estimates showed higher GM volumes
from T1w(R1, R2*) compared with T1w(R1) images in the
pallidum, dorsoventral part of the putamen and substantia
nigra (Fig. 3)—consistent with the enhancement of image
contrast due to R2* in these regions (Fig. 1b).

When estimating the combined effect of PD and R2* on
the GM volumes extracted from the T1w images the GM
volumes estimates from T1w(R1) were higher compared
with T1w(R1, PD, R2*) images (Fig. 8). We found a regional
pattern similar to the effects of the PD parameter (Fig. 2),
with the highest volumetric differences located in the deep
brain nuclei, the sensorimotor, and visual cortex.
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The sensorimotor and visual cortex showed higher corti-
cal thickness estimates from T1w(R1) than T1w(R1, PD)
and T1w(R1, PD, R2*) images (see Fig. 4a). These cortical
thickness changes were positively correlated with the vari-
ation of image contrast between the corresponding T1w
images (see Fig. 4b).

No differences in cortical thickness were found between
T1w(R1) and T1w(R1, R2*) images.

Gray-White Matter Contrast Analysis

We found higher RT1w(R1) and RPD values in the sensorimo-
tor and visual cortex (see Fig. 5a,b), mainly due to the higher
R1 and lower PD values in these GM regions. Figure 5c shows
the contrast change between T1w(R1) and T1w(R1,PD) images
predicted by Eq. (4) for the range of PD and T1w(R1) values
present in the brain. RPD produces a higher contrast change
than RT1w(R1). These theoretical predictions were in good
agreement with the contrast change calculated from the syn-
thetic data (Fig. 5d). The regions of highest contrast reduction

were the sensorimotor and visual cortex (Fig. 5d), consistent
with the GM volume (Fig. 2) and cortical thickness (Fig. 4)
reductions due to the inclusion of PD.

Age Main Effect

As repeatedly reported in the literature, we found sig-
nificant (PFWE< 0.05) age-related linear GM volume reduc-
tions primarily in frontal regions and within the ventral
part of the putamen. While this effect was common to all
T1w synthetic images, we observed significant interactions
between age and image modality (see Fig. 6): we report
stronger age-related GM volume reduction in the sensori-
motor cortex from T1w(R1,PD) compared with T1w(R1)
images (see Fig. 6a). Similarly, a higher gray matter vol-
ume loss associated with age was obtained from
T1w(R1,PD,R2*) with respect to the estimates derived from
T1w(R1) images in the aforementioned regions. The dorsal
part of the putamen and the pallidum showed stronger
age-related GM volume reduction estimated from T1w(R1)

Figure 1.

Example of synthetic MPRAGE T1w images. Individual quantitative maps of the MRI parameters

R1, PD and R2* (a). Synthetic T1w MPRAGE images computed from the maps of MRI parame-

ters and the MPRAGE signal equation [Eq. (1)] (b). Gray-white matter contrast in the synthetic

T1w images calculated from Eq. (2) (c). [Color figure can be viewed in the online issue, which is

available at wileyonlinelibrary.com.]
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when compared with estimates from T1w(R1,R2*) images
(see Fig. 6b). The same subcortical regions also showed
enhanced GM volume loss associated with age, when the
T1w(R1)-based estimates were compared with T1w(R1,PD,
R2*)-based ones.

The obtained GM volumes showed significant negative
correlations with the quadratic age term in the hippocam-
pus and insula. No significant interaction was found
between these correlations and the type of synthetic T1w
images examined.

The linear regression between cortical thickness esti-
mates and subject age showed significant (PFWE< 0.05)
negative correlation in the superior-frontal and lateral cor-
tex (see Fig. 7). This correlation was valid for the cortical
thickness computed from all synthetic T1w images. There
was no interaction between linear age effect and image
modalities used to estimate the cortical thickness.

We did not observe any significant correlation between
the quadratic age term and cortical thickness for any syn-
thetic T1w modality examined.

DISCUSSION

Our study highlights the differential impact of brain tis-
sue histological properties on the estimates of apparent
gray matter volume and cortical thickness obtained from

T1w images. We report significant changes in gray matter
volume and cortical thickness when the contributions of
myelin, iron, and tissue water concentration were
included—via their surrogate MRI biomarkers—in the ana-
tomical images used for extraction of the morphological
estimates. Significant differences were also observed when
changes in brain morphology due to ageing were consid-
ered. These results are illustrations of the effects of micro-
structural processes on brain morphology measures and
are highly relevant for morphometry findings commonly

Figure 2.

Pattern of higher gray matter volume estimation from T1w(R1) compared with T1w(R1,PD) syn-

thetic images (PFWE< 0.05). The bar plots represent the effect size of the paired t-test. [Color

figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]

Figure 3.

Higher gray matter volume estimation from T1w(R1,R2*) images

compared with T1w(R1). The statistical map of a paired t-test is

retrieved at a threshold of PFWE< 0.05 and displayed in standard

MNI space. [Color figure can be viewed in the online issue,

which is available at wileyonlinelibrary.com.]
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reported in computational neuroscience studies. These
results emphasize a need for critical reappraisal of previ-
ous neurobiological interpretations of computational anat-
omy findings and highlight the benefits of qMRI data for
the study of the biophysical processes taking place in the
healthy and diseased brain.

Cortical Findings

The first major finding of this study is the specific pat-
tern of differences in GM volume and cortical thickness
obtained from different subsets of synthetic T1w images
derived from the very same study population and proc-
essed with identical default settings. These symmetric
changes included the primary sensorimotor and visual cor-
tex and proved to be highly correlated with the corre-
sponding variation of image contrast between GM and
WM.

The inclusion of PD (i.e. observable water content) in
the signal equation of the synthetic T1w images led to a
reduction in the gray matter volume and cortical thickness.

While present over most of gray matter, this effect was
particularly pronounced in early myelinating regions such
as sensorimotor and visual cortex, which exhibit high val-
ues for R1—a correlate of myelin concentration [Lutti
et al., 2014; Sereno et al., 2013]. We demonstrated that
these morphometric differences are due to a higher ratio
of the PD values between gray and white matter in these
areas—in-line with the known inverse relationship
between R1 and PD [Helms et al., 2008a;Van de Moortele
et al., 2009].

Previous studies have reported differences in iron con-
tent between cortical GM layers II/III and WM in early
myelinated regions [Langkammer et al., 2010; St€uber et al.,
2014]. Given the known relationship between iron concen-
tration and R2*, our hypothesis was that the inclusion of
R2* in the MPRAGE signal equation would be associated
with GM volume or cortical thickness change [Yao et al.,
2009]. We attribute the absence of such observation to the
weak impact of R2* on MPRAGE images due to their short
echo times (TE). The influence of R2* could only be
detected in the basal ganglia, which exhibit high R2*

Figure 4.

Statistical comparison of cortical thickness estimates obtained from different synthetic image

modalities (PFWE< 0.05) (a). Correlation between the changes in cortical thickness across

modalities and the corresponding change in image contrast (b). The top row compares results

from T1w(R1) and T1w(R1,PD) images and the bottom row compares T1w(R1) and T1w(R1,PD,

R2*) images. [Color figure can be viewed in the online issue, which is available at wileyonlineli-

brary.com.]
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values due to their high iron content [Yao et al., 2009].
Note that this effect was counterbalanced by the PD values
when all MRI parameters involved in the contrast of
MPRAGE images were considered.

Modulation of cortical findings by age

The demonstrated age-dependent loss in cortical volume
and thickness is consistent with quantitative stereological
analyses on post mortem specimens showing a 10% reduc-
tion of neocortical neurons with relative preservation of
neuronal size and synaptic density [Pakkenberg et al.,
2003]. The observation of morphological changes in syn-
thetic images computed only from the MRI parameter
R1—an MRI biomarker of myelin content—points towards
a decrease of GM volume and cortical thickness driven by
a reduction of myelin content that could reflect neuronal
death.

Importantly, we show a differential estimation of age-
associated GM volume loss in primary sensorimotor cortex
when the PD contribution is included in the T1w signal
equation. This regional specificity can be interpreted as
PD-related sensitivity to age-related density reduction of
small myelinated fibres in the cortico-spinal track [Terao
et al., 1994]. An alternative explanation accommodating
the involvement of sensorimotor rather than other func-
tional areas is based on the idea of specific age-dependent
vulnerability of phylogenetically recent, high-workload
areas related to fine motility of the hands, bipedal locomo-
tion and posture [Ghika, 2008].

Unlike GM volume, there were no differential interac-
tions between cortical thickness and age across synthetic
images. This apparent controversy can be explained from
both the neurobiological and computational anatomy per-
spectives. The cortical GM volume variation is linked to
differences in thickness and surface area [Storsve et al.,
2014]. From a biological point of view, age-related brain

Figure 5.

Gray-white matter ratios of T1w(R1) (a) and proton density (PD) (b). Change in gray-white mat-

ter contrast due to proton density predicted by Eq. (4) (c). Change in gray-white matter con-

trast due to proton density computed from the T1w(R1) and T1w(R1,PD) synthetic images (d).

[Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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tissue property changes seem to impact mainly surface
area rather than cortical thickness [Panizzon et al., 2009].
The relationship between cortical thickness and surface
area is very debated: some studies have concluded to the
independence [Panizzon et al., 2009] and others to a nega-
tive correlation [Winkler et al., 2010] between these two
quantities. Regional differences in surface area are driven
by cellular events such as synaptogenesis, gliogenesis,
intracortical myelination, loss of dendritic size, and com-
plexity [Feldman and Dowd, 1975; Hill et al., 2010]. It has
been suggested that intracortical myelination plays a role
in the stretching of the cortical surface along the tangential
axis [Seldon, 2005]. This stretching is hypothesized to dis-
entangle neighbouring neuronal columns and enable the
relevant parts of the cortex to better differentiate afferent
signal patterns and increase functional specialization [Hog-
strom et al., 2012; Seldon, 2007]. This model provides one
possible mechanistic and functional hypothesis explaining
the higher GM volume sensitivity towards age-related
changes across synthetic images. Small age-related PD var-
iations [Callaghan et al., 2014] between gray and white
matter, induced by fibers demylination, might then
account for the differential age effects detected on GM vol-
umes across synthetic images.

From a methodological point of view, this controversy
can be explained by the fact that FreeSurfer uses a fixed
model for the intensities of the various tissue classes in
T1w scans, whereas SPM estimates the intensity distribu-

tions from the images. Accordingly, the FreeSurfer
approach can lead to systematic underestimation of the
GM tissue class probability in young subjects [Klauschen
et al., 2009]. This observation could explain the fact that

Figure 6.

Interaction between age-related linear reduction in gray matter volume and T1w(R1) and

T1w(R1,PD) (a) and T1w(R1) and T1w(R1, R2*) (b). [Color figure can be viewed in the online

issue, which is available at wileyonlinelibrary.com.]

Figure 7.

Statistical parametric map of the age-associated cortical thick-

ness decrease at PFWE< 0.05. The regression between age and

cortical thickness was identical for all image modalities. [Color

figure can be viewed in the online issue, which is available at

wileyonlinelibrary.com.]
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cortical thickness, estimated by FreeSurfer, is less sensitive
in detecting the interaction between age and small contrast
variations with respect to GM volume computed by SPM.

Subcortical Findings

Another important piece of evidence for the profound
effect of brain tissue properties on morphological estimates
comes from our results in subcortical regions across syn-
thetic image modalities. When including the effects of R2*
in the T1w synthetic images, the GM volume estimates of
putamen, globus pallidus and substantia nigra were
increased. R2* is considered a reliable biomarker of iron
content which is abundant in the basal ganglia [Aquino
et al., 2009; Langkammer et al., 2010]. Similarly to our cort-
ical findings, the modulation of sub-cortical results by PD
appears to be more pronounced in regions where the GM-
WM contrast on the T1w(R1) images is low. In deep brain
nuclei this is due the higher iron content that reduces the
longitudinal relaxation time [Lorio et al., 2014; Patenaude
et al., 2011].

Modulation of subcortical findings by age

Our results showing age-related GM volume decrease in
subcortical regions are in agreement with previous studies
reporting trends for negative correlation between age and
MT-based GM volume estimates in the dorso-lateral puta-
men [Callaghan et al., 2014; Draganski et al., 2011]. More-
over, we show that the inclusion of R2* in the signal
equation lowers the negative correlation between GM vol-
ume and age. We attribute this effect to the sensitivity of
R2* to iron concentration, which increases with age in the
basal ganglia. This contributes to the enhancement of
image contrast between gray and white matter, partly
counterbalancing the apparent GM decrease appearing in
T1w(R1) images [Hallgren and Sourander, 1958; St€uber

et al., 2014; Yao et al., 2009]. We thus demonstrate that
increased correlation between GM volume loss and age in
subcortical regions is mainly driven by tissue property
changes rather than atrophy pattern [Lorio et al., 2014].

Limitations

We find significant nonlinear age effects on GM volume
at the level of the hippocampus and insula, but no signifi-
cant results on cortical thickness. This might be the result
of the narrow separation between the insula or entorhinal
cortex and the adjacent putamen or hippocampus, leading
to errors in the definition of GM-WM surface and increas-
ing the variability of thickness estimates [Han et al., 2006].
However the absence of quadratic age effects on cortical
thickness is consistent with the literature [Fjell et al., 2009].
Inaccuracies in the reconstruction of the WM or pial surfa-
ces, originating in local misclassification of tissue types,
can lead to local erroneous estimations of cortical thickness
and depth [Bazin et al., 2014; Lutti et al., 2014]. Since var-
iations in myelination are of the same order along the cort-
ical depth and over the cortical surface, erroneous
definition of the WM or pial surfaces can obscure the defi-
nition of areal boundaries [Lutti et al., 2014; Waehnert
et al., 2016]. Inaccurate surface definition can occur near
large pial vessels, or where the gray-white matter surface
closely approaches thin strands of white matter under
small gyri, although it should be noted that these comprise
only a tiny fraction of temporal cortex.

CONCLUSION

In this study, we use MRI biomarkers of brain tissue
microstructure to investigate the origin of morphological
brain changes commonly reported in neuroscience
research. We show that myelin, iron and water content
yield regionally specific contributions to gray matter

Figure 8.

Pattern of higher gray matter volume estimation from T1w(R1) compared with T1w(R1,PD) and

to T1w(R1,PD,R2*) synthetic images. The t score (PFWE< 0.05) for the combined effects is indi-

cated by the colour square. [Color figure can be viewed in the online issue, which is available at

wileyonlinelibrary.com.]
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volume and cortical thickness estimates obtained from T1-
weighted MRI images. We also demonstrate that associ-
ated mechanisms account for a significant fraction of the
apparent age-related gray matter atrophy widely acknowl-
edged in the literature. These results motivate a review of
the neurobiological interpretation of previous computa-
tional anatomy findings and the use of qMRI biomarkers
for the study of the (patho)-physiological mechanisms in
the healthy and diseased brain.

The motivation behind this detailed analysis is to bring
to the attention of readers spurious morphological brain
changes of microscopic origin that can be detected using
T1-weighted MRI data. We do not recommend systematic
use of the approach presented here in future neuroanat-
omy studies. Rather we highlight the additional value of
quantitative MRI for neuroanatomy studies, which pro-
vides quantitative and specific biomarkers of tissue micro-
structure that allow an insight into the biophysical
mechanisms underlying brain changes. This motivates the
generalization of quantitative MRI over standard anatomi-
cal MRI for the study of brain anatomy.

The results presented in this study do not question the
validity of morphological measures as markers of brain
anatomy. However the choice of MRI data used to extract
these measures should be carefully considered. The extrac-
tion of morphological measures from qMRI data avoids
the limited interpretability of standard anatomical results
highlighted here. However, it should be noted that mor-
phological measures obtained from qMRI data remain sen-
sitive to the microstructural property that drive the image
contrast. In order to preserve the interpretability of results,
we recommend use of a qMRI biomarker specific to the
tissue microstructural property of interest. Because of its
dominant contribution to the MRI signal, an MRI contrast
specific to myelination might be preferred [Helms et al.,
2008b,].
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