484 research outputs found

    Noninvasive ¹³C-octanoic acid breath test shows delayed gastric emptying in patients with amyotrophic lateral sclerosis

    Get PDF
    Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disorder characterized by progressive loss of motor neurons. However, ALS has been recognized to also involve non-motor systems. Subclinical involvement of the autonomic system in ALS has been described. The recently developed C-13-octanoic acid breath test allows the noninvasive measurement of gastric emptying. With this new technique we investigated 18 patients with ALS and 14 healthy volunteers. None of the patients had diabetes mellitus or other disorders known to cause autonomic dysfunction. The participants received a solid standard test meal labeled with C-13-octanoic acid. Breath samples were taken at 15-min intervals for 5 h and were analyzed for (CO2)-C-13 by isotope selective nondispersive infrared spectrometry. Gastric emptying peak time (t(peak)) and emptying half time (t(1/2)) were determined. All healthy volunteers displayed normal gastric emptying with a mean emptying t(1/2) of 138 +/- 34 (range 68-172) min. Gastric emptying was delayed (t(1/2) > 160 min) in 15 of 18 patients with ALS. Emptying t(1/2) in ALS patients was 218 +/- 48 (range 126-278) min (p < 0.001). These results are compatible with autonomic involvement in patients with ALS, causing delayed gastric emptying of solids and encouraging the theory that ALS is a multisystem disease rather than a disease of the motor neurons only

    The impact of land cover change on surface energy and water balance in Mato Grosso, Brazil

    Get PDF
    The sensitivity of surface energy and water fluxes to recent land cover changes is simulated for a small region in northern Mato Grosso, Brazil. The Simple Biosphere Model (SiB2) is used, driven by biophysical parameters derived from the Moderate Resolution Imaging Spectroradiometer (MODIS) at 250-m resolution, to compare the effects of different land conversion types. The mechanisms through which changes in vegetation alter surface fluxes of energy, momentum, water, and carbon are analyzed for both wet and dry seasons. It is found that morphological changes contribute to warming and drying of the atmosphere while physiological changes, particularly those associated with a plant’s photosynthetic pathway, counterbalance or exacerbate the warming depending on the type of conversion and the season. Furthermore, this study’s results indicate that initial clearing of evergreen and transition forest to bare ground increases canopy temperature by up to 1.7°C. For subsequent land use such as pasture or cropland, the largest effect is seen for the conversion of evergreen forest to C3 cropland during the wet season, with a 21% decrease of the latent heat flux and 0.4°C increase in canopy temperature. The secondary conversion of pasture to cropland resulted in slight warming and drying during the wet season driven mostly by the change in carbon pathway from C4 to C3. For all conversions types, the daily temperature range is amplified, suggesting that plants replacing forest clearing require more temperature tolerance than the trees they replace. The results illustrate that the effect of deforestation on climate depends not only on the overall extent of clearing but also on the subsequent land use type

    Tracking 21st century anthropogenic and natural carbon fluxes through model-data integration

    Get PDF
    Monitoring the implementation of emission commitments under the Paris agreement relies on accurate estimates of terrestrial carbon fluxes. Here, we assimilate a 21st century observation-based time series of woody vegetation carbon densities into a bookkeeping model (BKM). This approach allows us to disentangle the observation-based carbon fluxes by terrestrial woody vegetation into anthropogenic and environmental contributions. Estimated emissions (from land-use and land cover changes) between 2000 and 2019 amount to 1.4 PgC yr−1, reducing the difference to other carbon cycle model estimates by up to 88% compared to previous estimates with the BKM (without the data assimilation). Our estimates suggest that the global woody vegetation carbon sink due to environmental processes (1.5 PgC yr−1) is weaker and more susceptible to interannual variations and extreme events than estimated by state-of-the-art process-based carbon cycle models. These findings highlight the need to advance model-data integration to improve estimates of the terrestrial carbon cycle under the Global Stocktake

    Timescale dependence of airborne fraction and underlying climate–carbon-cycle feedbacks for weak perturbations in CMIP5 models

    Get PDF
    The response of the global climate–carbon-cycle system to anthropogenic perturbations happens differently at different timescales. The unravelling of the memory structure underlying this timescale dependence is a major challenge in climate research. Recently the widely applied α–β–γ framework proposed by Friedlingstein et al. (2003) to quantify climate–carbon-cycle feedbacks has been generalized to account also for such internal memory. By means of this generalized framework, we investigate the timescale dependence of the airborne fraction for a set of Earth system models that participated in CMIP5 (Coupled Model Intercomparison Project Phase 5). The analysis is based on published simulation data from C4MIP-type (Coupled Climate–Carbon Cycle Model Intercomparison) experiments with these models. Independently of the considered scenario, the proposed generalization describes at global scale the reaction of the climate–carbon system to sufficiently weak perturbations. One prediction from this theory is how the timescale-resolved airborne fraction depends on the underlying feedbacks between climate and the carbon cycle. These feedbacks are expressed as timescale-resolved functions depending solely on analogues of the α, β, and γ sensitivities, introduced in the generalized framework as linear response functions. In this way a feedback-dependent quantity (airborne fraction) is predicted from feedback-independent quantities (the sensitivities). This is the key relation underlying our study. As a preparatory step, we demonstrate the predictive power of the generalized framework exemplarily for simulations with the Max Planck Institute (MPI) Earth System Model. The whole approach turns out to be valid for perturbations of up to an about 100 ppm CO2 rise above the pre-industrial level; beyond this value the response becomes non-linear. By means of the generalized framework we then derive the timescale dependence of the airborne fraction from the underlying climate–carbon-cycle feedbacks for an ensemble of CMIP5 models. Our analysis reveals that for all studied CMIP5 models (1) the total climate–carbon-cycle feedback is negative at all investigated timescales, (2) the airborne fraction generally decreases for increasing timescales, and (3) the land biogeochemical feedback dominates the model spread in the airborne fraction at all these timescales. Qualitatively similar results were previously found by employing the original α–β–γ framework to particular perturbation scenarios, but our study demonstrates that, although obtained from particular scenario simulations, they are characteristics of the coupled climate–carbon-cycle system as such, valid at all considered timescales. These more general conclusions are obtained by accounting for the internal memory of the system as encoded in the generalized sensitivities, which in contrast to the original α, β, and γ are scenario-independent.</p

    A Joint Venture of Ab Initio Molecular Dynamics, Coupled Cluster Electronic Structure Methods, and Liquid-State Theory to Compute Accurate Isotropic Hyperfine Constants of Nitroxide Probes in Water

    Get PDF
    The isotropic hyperfine coupling constant (HFCC, Aiso) of a pH-sensitive spin probe in a solution, HMI (2,2,3,4,5,5-hexamethylimidazolidin-1-oxyl, C9H19N2O) in water, is computed using an ensemble of state-of-the-art computational techniques and is gauged against X-band continuous wave electron paramagnetic resonance (EPR) measurement spectra at room temperature. Fundamentally, the investigation aims to delineate the cutting edge of current first-principles-based calculations of EPR parameters in aqueous solutions based on using rigorous statistical mechanics combined with correlated electronic structure techniques. In particular, the impact of solvation is described by exploiting fully atomistic, RISM integral equation, and implicit solvation approaches as offered by ab initio molecular dynamics (AIMD) of the periodic bulk solution (using the spin-polarized revPBE0-D3 hybrid functional), embedded cluster reference interaction site model integral equation theory (EC-RISM), and polarizable continuum embedding (using CPCM) of microsolvated complexes, respectively. HFCCs are obtained from efficient coupled cluster calculations (using open-shell DLPNO-CCSD theory) as well as from hybrid density functional theory (using revPBE0-D3). Re-solvation of “vertically desolvated” spin probe configuration snapshots by EC-RISM embedding is shown to provide significantly improved results compared to CPCM since only the former captures the inherent structural heterogeneity of the solvent close to the spin probe. The average values of the Aiso parameter obtained based on configurational statistics using explicit water within AIMD and from EC-RISM solvation are found to be satisfactorily close. Using either such explicit or RISM solvation in conjunction with DLPNO-CCSD calculations of the HFCCs provides an average Aiso parameter for HMI in aqueous solution at 300 K and 1 bar that is in good agreement with the experimentally determined one. The developed computational strategy is general in the sense that it can be readily applied to other spin probes of similar molecular complexity, to aqueous solutions beyond ambient conditions, as well as to other solvents in the longer run

    Global and regional effects of land-use change on climate in 21st century simulations with interactive carbon cycle

    Get PDF
    Biogeophysical (BGP) and biogeochemical (BGC) effects of land-use and land cover change (LULCC) are separated at the global and regional scales in new interactive CO2 simulations for the 21st century. Results from four earth system models (ESMs) are analyzed for the future RCP8.5 scenario from simulations with and without land-use and land cover change (LULCC), contributing to the Land-Use and Climate, IDentification of robust impacts (LUCID) project. Over the period 2006–2100, LULCC causes the atmospheric CO2 concentration to increase by 12, 22, and 66 ppm in CanESM2, MIROC-ESM, and MPI-ESM-LR, respectively. Statistically significant changes in global near-surface temperature are found in three models with a BGC-induced global mean annual warming between 0.07 and 0.23 K. BGP-induced responses are simulated by three models in areas of intense LULCC of varying sign and magnitude (between −0.47 and 0.10 K). Modifications of the land carbon pool by LULCC are disentangled in accordance with processes that can lead to increases and decreases in this carbon pool. Global land carbon losses due to LULCC are simulated by all models: 218, 57, 35 and 34 Gt C by MPI-ESM-LR, MIROC-ESM, IPSL-CM5A-LR and CanESM2, respectively. On the contrary, the CO2-fertilization effect caused by elevated atmospheric CO2 concentrations due to LULCC leads to a land carbon gain of 39 Gt C in MPI-ESM-LR and is almost negligible in the other models. A substantial part of the spread in models' responses to LULCC is attributed to the differences in implementation of LULCC (e.g., whether pastures or crops are simulated explicitly) and the simulation of specific processes. Simple idealized experiments with clear protocols for implementing LULCC in ESMs are needed to increase the understanding of model responses and the statistical significance of results, especially when analyzing the regional-scale impacts of LULCC
    corecore