285 research outputs found

    Derivation of the physical parameters of the jet in S5 0836+710 from stability analysis

    Full text link
    A number of extragalactic jets show periodic structures at different scales that can be associated with growing instabilities. The wavelengths of the developing instability modes and their ratios depend on the flow parameters, so the study of those structures can shed light on jet physics at the scales involved. In this work, we use the fits to the jet ridgeline obtained from different observations of S5 B0836++710 and apply stability analysis of relativistic, sheared flows to derive an estimate of the physical parameters of the jet. Based on the assumption that the observed structures are generated by growing Kelvin-Helmholtz (KH) instability modes, we have run numerical calculations of stability of a relativistic, sheared jet over a range of different jet parameters. We have spanned several orders of magnitude in jet-to-ambient medium density ratio, and jet internal energy, and checked different values of the Lorentz factor and shear layer width. This represents an independent method to obtain estimates of the physical parameters of a jet. By comparing the fastest growing wavelengths of each relevant mode given by the calculations with the observed wavelengths reported in the literature, we have derived independent estimates of the jet Lorentz factor, specific internal energy, jet-to-ambient medium density ratio and Mach number. We obtain a jet Lorentz factor γ≃12\gamma \simeq 12, specific internal energy of ε≃10−2 c2\varepsilon \simeq 10^{-2}\,c^2, jet-to-ambient medium density ratio of η≈10−3\eta\approx 10^{-3}, and an internal (classical) jet Mach number of Mj≈12M_\mathrm{j}\approx 12. We also find that the wavelength ratios are better recovered by a transversal structure with a width of ≃10 %\simeq 10\,\% of the jet radius. This method represents a powerful tool to derive the jet parameters in all jets showing helical patterns with different wavelengths.Comment: Accepted for publication in A&A, 15 pages, 12 figure

    On the nature of an ejection event in the jet of 3C111

    Full text link
    We present a possible scenario for the ejection of a superluminal component in the jet of the Broad Line Radio Galaxy 3C111 in early 1996. VLBI observations at 15 GHz discovered the presence of two jet features on scales smaller than one parsec. The first component evolves downstream, whereas the second one fades out after 1 parsec. We propose the injection of a perturbation of dense material followed by a decrease in the injection rate of material in the jet as a plausible explanation. This scenario is supported by 1D relativistic hydrodynamics and emission simulations. The perturbation is modeled as an increase in the jet density, without modifying the original Lorentz factor in the initial conditions. We show that an increase of the Lorentz factor in the material of the perturbation fails to reproduce the observed evolution of this flare. We are able to estimate the lifetime of the ejection event in 3C111 to be 36\pm7 days.Comment: Accepted for publication in Astronomy & Astrophysics Letter

    A sensitive study of the peculiar jet structure HST-1 in M87

    Full text link
    To obtain a better understanding of the location and mechanisms for the production of the gamma-ray emission in jets of AGN we present a detailed study of the HST-1 structure, 0.8 arcsec downstream the jet of M87, previously identified as a possible candidate for TeV emission. HST-1 shows a very peculiar structure with superluminal as well as possible stationary sub-components, and appears to be located in the transition from a parabolic to a conical jet shape, presumably leading to the formation of a recollimation shock. This scenario is supported by our new RHD simulations in which the interaction of a moving component with a recollimation shock leads to the appearance of a new superluminal component. To discern whether HST-1 is produced by a recollimation shock or some other MHD instability, we present new polarimetric 2.2 and 5 GHz VLBA, as well as 15, 22 and 43 GHz JVLA observations obtained between November 2012 and March 2013.Comment: 6 page

    Jet-torus connection in radio galaxies: Relativistic hydrodynamics and synthetic emission

    Full text link
    High-resolution Very-Long-Baseline Interferometry observations of active galactic nuclei have revealed asymmetric structures in the jets of radio galaxies. These asymmetric structures may be due to internal asymmetries in the jet, could be induced by the different conditions in the surrounding ambient medium including the obscuring torus, or a combination of the two. In this paper we investigate the influence of the ambient medium (including the obscuring torus) on the observed properties of jets from radio galaxies. We performed special-relativistic hydrodynamic (RHD) simulations of over-pressured and pressure-matched jets using the special-relativistic hydrodynamics code \texttt{Ratpenat}, which is based on a second-order accurate finite-volume method and an approximate Riemann solver. Using a newly developed emission code to compute the electromagnetic emission, we have investigated the influence of different ambient medium and torus configurations on the jet structure and subsequently computed the non-thermal emission produced by the jet and the thermal absorption due to the torus. To better compare the emission simulations with observations we produced synthetic radio maps, taking into account the properties of the observatory. The detailed analysis of our simulations shows that the observed asymmetries can be produced by the interaction of the jet with the ambient medium and by the absorption properties of the obscuring torus.Comment: 14 pages, 17 figures, submitted to A&

    RAM: A Relativistic Adaptive Mesh Refinement Hydrodynamics Code

    Full text link
    We have developed a new computer code, RAM, to solve the conservative equations of special relativistic hydrodynamics (SRHD) using adaptive mesh refinement (AMR) on parallel computers. We have implemented a characteristic-wise, finite difference, weighted essentially non-oscillatory (WENO) scheme using the full characteristic decomposition of the SRHD equations to achieve fifth-order accuracy in space. For time integration we use the method of lines with a third-order total variation diminishing (TVD) Runge-Kutta scheme. We have also implemented fourth and fifth order Runge-Kutta time integration schemes for comparison. The implementation of AMR and parallelization is based on the FLASH code. RAM is modular and includes the capability to easily swap hydrodynamics solvers, reconstruction methods and physics modules. In addition to WENO we have implemented a finite volume module with the piecewise parabolic method (PPM) for reconstruction and the modified Marquina approximate Riemann solver to work with TVD Runge-Kutta time integration. We examine the difficulty of accurately simulating shear flows in numerical relativistic hydrodynamics codes. We show that under-resolved simulations of simple test problems with transverse velocity components produce incorrect results and demonstrate the ability of RAM to correctly solve these problems. RAM has been tested in one, two and three dimensions and in Cartesian, cylindrical and spherical coordinates. We have demonstrated fifth-order accuracy for WENO in one and two dimensions and performed detailed comparison with other schemes for which we show significantly lower convergence rates. Extensive testing is presented demonstrating the ability of RAM to address challenging open questions in relativistic astrophysics.Comment: ApJS in press, 21 pages including 18 figures (6 color figures

    Catching the Radio Flare in CTA 102 III. Core-Shift and Spectral Analysis

    Get PDF
    The temporal and spatial spectral evolution of the jets of AGN can be studied with multi-frequency, multi-epoch VLBI observations. The combination of both, morphological and spectral parameters can be used to derive source intrinsic physical properties such as the magnetic field and the non-thermal particle density. In the first two papers of this series, we analyzed the single-dish light curves and the VLBI kinematics of the blazar CTA 102 and suggested a shock-shock interaction between a traveling and a standing shock wave as a possible scenario to explain the observed evolution of the component associated to the 2006 flare. In this paper we investigate the core-shift and spectral evolution to test our hypothesis of a shock-shock interaction. We used 8 multi-frequency VLBA observations to analyze the temporal and spatial evolution of the spectral parameters during the flare. We observed CTA 102 between May 2005 and April 2007 using the VLBA at six different frequencies spanning from 2 - 86 GHz. After the calibrated VLBA images were corrected for opacity, we performed a detailed spectral analysis. From the derived values we estimated the magnetic field and the density of the relativistic particles. The detailed analysis of the opacity shift reveals that the position of the jet core is proportional to nu^-1 with some temporal variations. The value suggests possible equipartition between magnetic field energy and particle kinetic energy densities at the most compact regions. From the variation of the physical parameters we deduced that the 2006 flare in CTA 102 is connected to the ejection of a new traveling feature (t=2005.9) and the interaction between this shock wave and a stationary structure around 0.1 mas from the core. The source kinematics together with the spectral and structural variations can be described by helical motions in an over-pressured jet.Comment: 35 pages, 46 figure

    Erratic Jet Wobbling in the BL Lacertae Object OJ287 Revealed by Sixteen Years of 7mm VLBA Observations

    Get PDF
    We present the results from an ultra-high-resolution 7mm Very Long Baseline Array (VLBA) study of the relativistic jet in the BL Lacertae object OJ287 from 1995 to 2011 containing 136 total intensity images. Analysis of the image sequence reveals a sharp jet-position-angle swing by >100 deg. during [2004,2006], as viewed in the plane of the sky, that we interpret as the crossing of the jet from one side of the line of sight to the other during a softer and longer term swing of the inner jet. Modulating such long term swing, our images also show for the first time a prominent erratic wobbling behavior of the innermost ~0.4mas of the jet with fluctuations in position angle of up to ~40 deg. over time scales ~2yr. This is accompanied by highly superluminal motions along non-radial trajectories, which reflect the remarkable non-ballistic nature of the jet plasma on these scales. The erratic nature and short time scales of the observed behavior rules out scenarios such as binary black hole systems, accretion disk precession, and interaction with the ambient medium as possible origins of the phenomenon on the scales probed by our observations, although such processes may cause longer-term modulation of the jet direction. We propose that variable asymmetric injection of the jet flow; perhaps related to turbulence in the accretion disk; coupled with hydrodynamic instabilities, leads to the non-ballistic dynamics that cause the observed non-periodic changes in the direction of the inner jet.Comment: Accepted for Publication in The Astrophysical Journal. 11 pages, 6 figures, 4 tables. High resolution images on figure 1 and complete tables 1 and 2 may be provided on reques
    • …
    corecore