We present a possible scenario for the ejection of a superluminal component
in the jet of the Broad Line Radio Galaxy 3C111 in early 1996. VLBI
observations at 15 GHz discovered the presence of two jet features on scales
smaller than one parsec. The first component evolves downstream, whereas the
second one fades out after 1 parsec. We propose the injection of a perturbation
of dense material followed by a decrease in the injection rate of material in
the jet as a plausible explanation. This scenario is supported by 1D
relativistic hydrodynamics and emission simulations. The perturbation is
modeled as an increase in the jet density, without modifying the original
Lorentz factor in the initial conditions. We show that an increase of the
Lorentz factor in the material of the perturbation fails to reproduce the
observed evolution of this flare. We are able to estimate the lifetime of the
ejection event in 3C111 to be 36\pm7 days.Comment: Accepted for publication in Astronomy & Astrophysics Letter