206 research outputs found

    Dynamics of Large-Scale Plastic Deformation and the Necking Instability in Amorphous Solids

    Full text link
    We use the shear transformation zone (STZ) theory of dynamic plasticity to study the necking instability in a two-dimensional strip of amorphous solid. Our Eulerian description of large-scale deformation allows us to follow the instability far into the nonlinear regime. We find a strong rate dependence; the higher the applied strain rate, the further the strip extends before the onset of instability. The material hardens outside the necking region, but the description of plastic flow within the neck is distinctly different from that of conventional time-independent theories of plasticity.Comment: 4 pages, 3 figures (eps), revtex4, added references, changed and added content, resubmitted to PR

    Extinction Rates for Fluctuation-Induced Metastabilities : A Real-Space WKB Approach

    Full text link
    The extinction of a single species due to demographic stochasticity is analyzed. The discrete nature of the individual agents and the Poissonian noise related to the birth-death processes result in local extinction of a metastable population, as the system hits the absorbing state. The Fokker-Planck formulation of that problem fails to capture the statistics of large deviations from the metastable state, while approximations appropriate close to the absorbing state become, in general, invalid as the population becomes large. To connect these two regimes, a master equation based on a real space WKB method is presented, and is shown to yield an excellent approximation for the decay rate and the extreme events statistics all the way down to the absorbing state. The details of the underlying microscopic process, smeared out in a mean field treatment, are shown to be crucial for an exact determination of the extinction exponent. This general scheme is shown to reproduce the known results in the field, to yield new corollaries and to fit quite precisely the numerical solutions. Moreover it allows for systematic improvement via a series expansion where the small parameter is the inverse of the number of individuals in the metastable state

    Duality in interacting particle systems and boson representation

    Full text link
    In the context of Markov processes, we show a new scheme to derive dual processes and a duality function based on a boson representation. This scheme is applicable to a case in which a generator is expressed by boson creation and annihilation operators. For some stochastic processes, duality relations have been known, which connect continuous time Markov processes with discrete state space and those with continuous state space. We clarify that using a generating function approach and the Doi-Peliti method, a birth-death process (or discrete random walk model) is naturally connected to a differential equation with continuous variables, which would be interpreted as a dual Markov process. The key point in the derivation is to use bosonic coherent states as a bra state, instead of a conventional projection state. As examples, we apply the scheme to a simple birth-coagulation process and a Brownian momentum process. The generator of the Brownian momentum process is written by elements of the SU(1,1) algebra, and using a boson realization of SU(1,1) we show that the same scheme is available.Comment: 13 page

    The Weakly Pushed Nature of "Pulled" Fronts with a Cutoff

    Get PDF
    The concept of pulled fronts with a cutoff ϵ\epsilon has been introduced to model the effects of discrete nature of the constituent particles on the asymptotic front speed in models with continuum variables (Pulled fronts are the fronts which propagate into an unstable state, and have an asymptotic front speed equal to the linear spreading speed vv^* of small linear perturbations around the unstable state). In this paper, we demonstrate that the introduction of a cutoff actually makes such pulled fronts weakly pushed. For the nonlinear diffusion equation with a cutoff, we show that the longest relaxation times τm\tau_m that govern the convergence to the asymptotic front speed and profile, are given by τm1[(m+1)21]π2/ln2ϵ\tau_m^{-1} \simeq [(m+1)^2-1] \pi^2 / \ln^2 \epsilon, for m=1,2,...m=1,2,....Comment: 4 pages, 2 figures, submitted to Brief Reports, Phys. Rev.

    Fronts with a Growth Cutoff but Speed Higher than vv^*

    Get PDF
    Fronts, propagating into an unstable state ϕ=0\phi=0, whose asymptotic speed vasv_{\text{as}} is equal to the linear spreading speed vv^* of infinitesimal perturbations about that state (so-called pulled fronts) are very sensitive to changes in the growth rate f(ϕ)f(\phi) for ϕ1\phi \ll 1. It was recently found that with a small cutoff, f(ϕ)=0f(\phi)=0 for ϕ<ϵ\phi < \epsilon, vasv_{\text{as}} converges to vv^* very slowly from below, as ln2ϵ\ln^{-2} \epsilon. Here we show that with such a cutoff {\em and} a small enhancement of the growth rate for small ϕ\phi behind it, one can have vas>vv_{\text{as}} > v^*, {\em even} in the limit ϵ0\epsilon \to 0. The effect is confirmed in a stochastic lattice model simulation where the growth rules for a few particles per site are accordingly modified.Comment: 4 pages, 4 figures, to appear in Rapid Comm., Phys. Rev.

    Front Propagation and Diffusion in the A <--> A + A Hard-core Reaction on a Chain

    Get PDF
    We study front propagation and diffusion in the reaction-diffusion system A \leftrightharpoons A + A on a lattice. On each lattice site at most one A particle is allowed at any time. In this paper, we analyze the problem in the full range of parameter space, keeping the discrete nature of the lattice and the particles intact. Our analysis of the stochastic dynamics of the foremost occupied lattice site yields simple expressions for the front speed and the front diffusion coefficient which are in excellent agreement with simulation results.Comment: 5 pages, 5 figures, to appear in Phys. Rev.

    The universality class of fluctuating pulled fronts

    Get PDF
    It has recently been proposed that fluctuating ``pulled'' fronts propagating into an unstable state should not be in the standard KPZ universality class for rough interface growth. We introduce an effective field equation for this class of problems, and show on the basis of it that noisy pulled fronts in {\em d+1} bulk dimensions should be in the universality class of the {\em (d+1)+1}D KPZ equation rather than of the {\em d+1}D KPZ equation. Our scenario ties together a number of heretofore unexplained observations in the literature, and is supported by previous numerical results.Comment: 4 pages, 2 figure

    Does the continuum theory of dynamic fracture work?

    Full text link
    We investigate the validity of the Linear Elastic Fracture Mechanics approach to dynamic fracture. We first test the predictions in a lattice simulation, using a formula of Eshelby for the time-dependent Stress Intensity Factor. Excellent agreement with the theory is found. We then use the same method to analyze the experiment of Sharon and Fineberg. The data here is not consistent with the theoretical expectation.Comment: 4 page

    Asymptotic Scaling of the Diffusion Coefficient of Fluctuating "Pulled" Fronts

    Full text link
    We present a (heuristic) theoretical derivation for the scaling of the diffusion coefficient DfD_f for fluctuating ``pulled'' fronts. In agreement with earlier numerical simulations, we find that as NN\to\infty, DfD_f approaches zero as 1/ln3N1/\ln^3N, where NN is the average number of particles per correlation volume in the stable phase of the front. This behaviour of DfD_f stems from the shape fluctuations at the very tip of the front, and is independent of the microscopic model.Comment: Some minor algebra corrected, to appear in Rapid Comm., Phys. Rev.

    Phase Transitions and Spatio-Temporal Fluctuations in Stochastic Lattice Lotka-Volterra Models

    Full text link
    We study the general properties of stochastic two-species models for predator-prey competition and coexistence with Lotka-Volterra type interactions defined on a dd-dimensional lattice. Introducing spatial degrees of freedom and allowing for stochastic fluctuations generically invalidates the classical, deterministic mean-field picture. Already within mean-field theory, however, spatial constraints, modeling locally limited resources, lead to the emergence of a continuous active-to-absorbing state phase transition. Field-theoretic arguments, supported by Monte Carlo simulation results, indicate that this transition, which represents an extinction threshold for the predator population, is governed by the directed percolation universality class. In the active state, where predators and prey coexist, the classical center singularities with associated population cycles are replaced by either nodes or foci. In the vicinity of the stable nodes, the system is characterized by essentially stationary localized clusters of predators in a sea of prey. Near the stable foci, however, the stochastic lattice Lotka-Volterra system displays complex, correlated spatio-temporal patterns of competing activity fronts. Correspondingly, the population densities in our numerical simulations turn out to oscillate irregularly in time, with amplitudes that tend to zero in the thermodynamic limit. Yet in finite systems these oscillatory fluctuations are quite persistent, and their features are determined by the intrinsic interaction rates rather than the initial conditions. We emphasize the robustness of this scenario with respect to various model perturbations.Comment: 19 pages, 11 figures, 2-column revtex4 format. Minor modifications. Accepted in the Journal of Statistical Physics. Movies corresponding to Figures 2 and 3 are available at http://www.phys.vt.edu/~tauber/PredatorPrey/movies
    corecore