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Weakly pushed nature of “pulled” fronts with a cutoff
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The concept of pulled fronts with a cutoffhas been introduced to model the effects of the discrete nature
of the constituent particles on the asymptotic front speed in models with continuum vafjaldled fronts are
the fronts that propagate into an unstable state, and have an asymptotic front speed equal to the linear spreading
speedv* of small linear perturbations around the unstable stdte this paper, we demonstrate that the
introduction of a cutoff actually makes such pulled fronts weakly pushed. For the nonlinear diffusion equation
with a cutoff, we show that the longest relaxation timgsthat govern the convergence to the asymptotic front
speed and profile, are given by '=[(m+1)?—1]7?/In%, form=1,2, .. ..
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[. INTRODUCTION Without the cutoff, i.e., fore=0, this equation is the well-
known nonlinear diffusion equation, which has been used
Pulled fronts are fronts that propagate into an unstablsince long as the simplest model to study front propagation
state, for which the propagation dynamics is essentially as iinto an unstable stat®—11]. Brunet and Derridd6] found
they are being pulled along by the growth and spreading ofhat the asymptotic front speeds goes as
small perturbations about the unstable state, into which the
front propagates. Concretely, this means that their asymptotic
speedv 55 is equal to the linear spreading speet of per- s T
turbations around the unstable staig;=v* [1-6]. Fronts VasmUe=U" 7 o @
that propagate into an unstable state but for whigh>uv*
are often termed “pushed.” The name stems from the intui-
tive idea[7,8] that in this regime, the dynamics in the non- wherev* =2 is the asymptotic speed of the corresponding
linear front region or the bulk region behind the front actu-pulled front of Eq.(1) for e=0. The above formula shows
ally drivesthe front propagation: effectively it pushes the that the front speedv. converges very slowly to the
front from behind, and the front moves with a speed that isasymptotic speed*; this illustrates that unlike pushed
higher than the natural speed with which small perturbationgronts, pulled fronts are very sensitive to small changes in the
about the unstable state spread by themselves ahead of tlgnamics of the phase into which they propagate.
front. In comparing with stochastic models of particles on a lat-
It is clear from the definition that the concept of a pulledtice, Brunet and Derrida associated the cuteffvith 1/N,
front essentially pertains to a continuum formulation of thewhereN is the average number of particles in a correlation
relevant dynamical variables. The linear spreading spéed region in the saturation phase behind the fid@jt Although
is defined and calculated in practice by considering perturbahe validity of this identification has been the matter of some
tions of arbitrarily small amplitudeabout the unstable state debate, it appears that E() with e=1/N does give the
of the dynamical equations; the value of then follows proper asymptotic correction to the front speed even for very
from an asymptotic analysis of the linearized dynamicallarge N. We refer to the literatur¢6,12—19 for a further
equations[5]. However, in all cases, in which one cannot discussion of the applicability of these ideas to stochastic
ignore the fact that matter is made of discrete particles, onenodels.
cannot perturb the unstable state by any arbitrary small It is intuitively clear that as soon as we introduce this
amount, because this amount must be at least one “quarutoff, fronts that are pulled foe=0 must actually become
tum” of particle large. weakly pushed as soon &s-0. After all, any perturbation
To model this discrete nature of the constituent particlesaround the valueb=0 does not start to grow until the local
by means of a continuum equation, Brunet and Derfla ¢ value crosses, so strictly speaking, the linear spreading
studied the nonlinear diffusion equation velocityv™* (€) of arbitrarily small linear perturbations about
the statep=0 vanishes. As .>v*(€) =0, one clearly must
5 have a weakly pushed front. With this idea in mind, it is
%: ﬂ+f(¢) (1) natural to address the convergence of the front speed to the
gt gx2 asymptotic value, since it is well known that the speed of
pulled fronts relaxes algebraically slowly to the asymptotic
valuev* [3-6], while pushed fronts normally have exponen-
tial relaxation to their asymptotic speed.
These observations motivate us to investigate here the
f(p)=0(dp—e)[p—¢"], n>1, e.g.,n=2 or 3. slowest relaxation modes of the stability spectrum of fronts
(2)  for the nonlinear diffusion equatiol), with a cutoffe in the
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with a cutoff € in the growth termf (),
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growth term(2). We calculate these relaxation modes explic-
itly for small €, and find that the slowest relaxation timegs v
are given by ©

-1
m

_[(m+1)?—1]n?

2 ’

m=12.... (4)
In“e

width ~ |In |-~ -

Hence, the relaxation times of the front velocity and profile

approach zero as— 0, but only logarithmically slowly. Just :’SO ¢
like the corrections to the front speed for practical values of .

e are often significant, so is the exponential relaxation, for 'f': 1
example, fore=10"°, the longest relaxation time, is about TR —%)

4.48. Thus, while in the absence of a cutoff the front speed is
approached very slowly, only as 8/&vheret is the time
[3—-6], with a realistic value ok, the front speed converges
relatively quickly to the asymptotic value.

FIG. 1. The potentiaV/(&) in the Schrdinger operator obtained
in the stability analysis.

plays the role of the potential. If we now denote &y the
coordinate of the point wherg (&)= ¢, then for the nonlin-

Il. STABILITY ANALYSIS OF THE ASYMPTOTIC FRONT earity (2) the potentiaV(¢) is easily seen to have the form

SOLUTION
2
e UE 1
.A. The stability operatc-Jr - V(&)= [Z_ 1+ n¢21(§)}®(§o— &)— — 86— &)
The asymptotic shape of the front is a uniformly translat- Ve
ing front solution ¢ .(x,t) which is a function ofonly the 02
comoving coordinat€&=x—uv t, and which is obtained by + f@(g—go). 9)

solving the ordinary differential equation
q 42 The §-function in Eq.(9) appears from the functional deriva-
$el$) = Pel) +1(h(6)). (5)  tive in Eq.(6), since there is a discontinuity of magnitude
dé dé? in f(¢) at ¢=e. This discontinuity contributes an amount

) . - i ) equal to
In carrying out the linear stability analysis of this front solu-

tion, it is convenient to follow the standard route of trans- dO(¢.—e) €
forming the linear eigenvalue problem into a Salinger be——F = (Pp.—€)=
| i i dé |pu(&o)]
eigenvalue problenj2,5]. We consider a functionp(x,t), € €\50
which is infinitesimally different fromp (€)= ¢.(x— v t) in (10)
the comoving frame, i.e.d(x,)=¢(Xx—v )+ (&), 15 v(g). If we combine this with the fact thaltd.(&o)]
Upon Imean_zmg the dy”am'c?" equation in the comovmgzevs' which follows immediately from the fact that one
frame., one flnd_s that the functiom(x,t)= n(&,t) obeys the simply hasd,(£)=ee i) for ¢=¢,, one obtains the
following equation: S-function term in the potential given in E().
The form of the potential/(£) is sketched in Fig. 1. No-
2
(9_77 — Uéﬁ_” + ’?_77 + M|¢:¢ 7. (6) tice thatg (&) is a monotonically increasing function froen
ot 2 TN € at £, towards the leftasymptotically reaching the value 1 as
&— —o, As a result, foré<&y, V(&) also increases mono-
Since this equation is linear in, the question of stability can topjcally towards the left, from v2/4—1+ne" !
be answered by studying the spectrum of the temporal eigen= _ ;2/In2¢ at ¢=¢,_, to (n— #2/InZe)~n as £ —o. At
values. To this end, we expresgé,t) as &, there is an attractiveS-function potential of strength
1/v ,~1/2 and a finite step of height 1. The crucial feature for

—U,

0(§—&o)

— a—Eta—uv,é2
n(&H=e"e vele), ™ the stability analysis below is the fact th®{ &) stays re-
2/|n2 ;
which converts Eq(6) to the following one-dimensional Markably flat at a value- 7*/In“e over a distancegp—¢,)
Schrainger equation for a particle in a potentiaith =|In ¢, and then on the left of,, it increases to the value
h22m=1), ~n, over a distance of order unity. As argued in Sec. 1B,

this is a consequence of the nature of the soluthQ(¥).
If there are negative eigenvalues of the above Stihger

d,q}él Ye(§)=Eye(€). (8  equation, then according to E(), n(&,t) grows in time in

the comoving frame, i.e., the front solutiop.(§) is un-
stable. On the other hand, if there are no negative eigenval-
ues, then the asymptotic front shape is stable, and the spec-
trum of the eigenvalues then determines the nature of the
relaxation of¢(x,t) to the solutiong (&).

d2 vz sf(¢)
Tag2 4 6p

In Eq. (8), the quantity
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The full spectrum in general depends on the boundary
conditions imposed on the eigenfunctiofis. Here we con-
sider only localized perturbations, for which we need to have
7n(¢&,1)—0 asé— =, Due to the exponential factor in Eq.
(7), any eigenfunction that vanishes a&— < is consistent —
with vanishing » towards the righ{16]. However, for & R width ~ | In |- N
— —oo, the eigenfunctiong/z need to vanish exponentially
fast with a sufficiently large exponent, so that when it is

Vo(£)

combined with the exponentially diverging teen<?, they & 160 ¢
are still consistent with the requirement thatvanishes for R

é——o, For the lowest “energy” eigenvalues, which we et 1

will investigate below, we will demonstrate that these re- TR %)

quirements are obeyed. . )
FIG. 2. The approximate potenti&,(&) that can be used for

calculating the low-lying modes for large widths of the bottom well,
B. Shape of¢ (&) and the zero mode of the stability operator  i.e., for smalle.

From the form in the potential, it is clear that the lowest h _ _ ically d .
“energy” eigenmodes, i.e., the slowest relaxation eigen-Furthermore, sinceg(¢) is a monotonically decreasing

. - _ UE /2 .
modes, are the ones that are confined to the bottom of thizinction of, the solutionysy(&) =e Y2d ¢ 1d¢ is nodeless.

potential. This is the region where the nonlinear terms pro>Ince We know from elementary quantum mechanics that the

portional to ¢"~* are negligible, and which is often called nodeless eigenfunction has the lowest eigenvalue, this im-
the “leading edge” of the front profile. Foe<1, the solu- plies that all theother eigenvalues of Eq(8) are positive,

i f in this leadi dae is ai i.e., the solutiong (&) is stable.
lon of ¢(¢) in this leading edge is given K] The spectrum of eigenvalues of E@®) for E>0, there-

[Ine| . - fore, is going to determine the decay property of localized
¢E(§)~Tsw[zi§]e Zé for E<=é<ép=|Ine| perturbationsz(£,t) in time. We notice that folE>v%/4

~1, the value of the potential on the far right, the spectrum

=ee velé=6)  for &= ¢,. (11 of eigenvalues will be continuous. However, we are particu-

larly interested in the smallest eigenvalldgs>0 for small

m, since these are the eigenmodes that decay the slowest in
time. These are the eigenvalues associated with bound states
in the potential well.

Here, z;~m/|In € and z,=1+ O(€?). The values of¢ (£)
andd¢ /d¢ are continuous at=¢&,, and ¢ (&) =€. Al-
though Egs(11) and(12) suggest at first sight that thi (&)
has a node a&§=0, Eq.(11) is only valid in the leading edge,
and ¢ (&) crosses over to other behavior aroufid which C. Lowest eigenmodes and eigenvalues fa<1

makes the front solutiorb.(£) a monotonically decreasing  As e—0, the bottom well of the potential becomes very
function of £. The value of¢; is set by the criterion that wide: its width diverges ain €. As we know from elemen-
around¢; the nonlinear terms of (¢.(£)) start to become  tary quantum mechanics, the lowest “energy” eigenfunctions
significant, just like; marks the point where the potential then become essentially sine or cosine waves in the potential
V(¢) crosses over from the asymptotic value on the left towell with small wave numberk and correspondingly small
the bottom value. The coordinatg, therefore, is more or “energy” eigenvalues.

less fixed; on the other hang, asymptotically diverges as  Based on the fact that the potenti&l&) on the left rises

=|In ¢ for smalle, making ¢, ¢;) also diverge as=[Inel.  over length scales of order unity, we now make an approxi-
This is an immediate consequence of the overall exponentighation. In the limit that the bottom well is very wide and the
decay ofp(£) in ¢ at the leading edge. k values of the bound state eigenmodes very small, it be-

From the form in the potential, it is clear that the lowestcomes an increasingly good and an asymptotically correct
“energy” eigenmodes, i.e., the slowest relaxation eigen-approximation to view the left wall of the well simply as a
modes, are the ones that are confined to the bottom of theteep step, as sketched in Fig. 2—we thus approximate the
potential. We notice that among these modes, invariablyotential by
there is a zero mode of the stability operator that is associ-
ated with the uniformly translating front solution of a dy- m?
namical equation, e.g., Eql): since ¢ (¢) and ¢ (é+a) Vo(§)=”[1—(f)]—m—2®(§)[1—®(§—§o)]
are solutions of Eq(5) for any arbitrarya, we find by ex- €
panding to first order ira that yo(¢)=e"<?d¢_ /dé is a 1
solution of Eq.(8) with eigenvalueE=0. From the result —50(6= &) +O(£~ o). (13
(12) for the asymptotic front solution, we then immediately

etto dominant order . . . . .
g On the right hand side, there is an attractié«unction

potential at the point where the potential shows a step to a
Yo~ sinzié,  zi=mwlline|, &sE<E,. (12 value close to 1. It is easy to check that the prefactor of the
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S-function of 1/2 is not strong enough to give rise to boundky,=z;, which we calculated from the shape of the front
states withE<<0, and as a result, for very small valueseof  solution ¢, in the leading edge. Besides verifying the con-
the low-lying eigenmodes approach sine waves with nodes alistency of our approach, this also confirms that there are no

the position of the walls of the potentigl7] corrections to Eq(16) for m=0: for m=0 it will yield an
. eigenvalue zero to all orders ia Therefore, the smallest
m=SiMKm(§—&1)]. (14 nonzero eigenvalue, which governs the relaxation of the

hf{ont velocity and profile to the asymptotic ones g with

The condition that these solutions have nodes at the rig S :
relaxation timer; given by

edge of the well then yields

:(m-i-l)Tr (m+1)m 372

m = , 15 “l_p
§o— &1 |In ¢ = n=E In%¢’ 17

implying that the corresponding eigenvalues are given by
Equation(16) also confirms that as— 0, the gap between
[(m+1)?—1]7? B the spectral lines decreases as’k) which is consistent with
Em= In2e » m=012.... (16) the fact that for a pulled fronte=0 and the spectrum be-
comes gapless. Also notice that for the eigenvalues in Eq.
Here, the first term between square brackets comes from tH@6), the corresponding eigenmodes:(£) decay as exp
“kinetic energy” term k?, while the second term originates (— \/ﬁ|§|) for &— — and as expfv &2) for £&—o, which

from the value of the potential at the bottom. make e’<“2y=(£) go to zero foré— *oo, satisfying the
Note that form=0, the eigenmode sky with eigenvalue  boundary conditions discussed previously at the end of Sec.
E, is indeed the same as the zero eigenmode of E).with ITA.
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