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Weakly pushed nature of ‘‘pulled’’ fronts with a cutoff
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~Received 17 October 2001; published 2 May 2002!

The concept of pulled fronts with a cutoffe has been introduced to model the effects of the discrete nature
of the constituent particles on the asymptotic front speed in models with continuum variables~pulled fronts are
the fronts that propagate into an unstable state, and have an asymptotic front speed equal to the linear spreading
speedv* of small linear perturbations around the unstable state!. In this paper, we demonstrate that the
introduction of a cutoff actually makes such pulled fronts weakly pushed. For the nonlinear diffusion equation
with a cutoff, we show that the longest relaxation timestm that govern the convergence to the asymptotic front
speed and profile, are given bytm

21.@(m11)221#p2/ln2e, for m51,2, . . . .
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I. INTRODUCTION

Pulled fronts are fronts that propagate into an unsta
state, for which the propagation dynamics is essentially a
they are being pulled along by the growth and spreading
small perturbations about the unstable state, into which
front propagates. Concretely, this means that their asymp
speedvas is equal to the linear spreading speedv* of per-
turbations around the unstable state,vas5v* @1–6#. Fronts
that propagate into an unstable state but for whichvas.v*
are often termed ‘‘pushed.’’ The name stems from the int
tive idea@7,8# that in this regime, the dynamics in the no
linear front region or the bulk region behind the front ac
ally drives the front propagation: effectively it pushes th
front from behind, and the front moves with a speed tha
higher than the natural speed with which small perturbati
about the unstable state spread by themselves ahead o
front.

It is clear from the definition that the concept of a pull
front essentially pertains to a continuum formulation of t
relevant dynamical variables. The linear spreading speedv*
is defined and calculated in practice by considering pertu
tions of arbitrarily small amplitudeabout the unstable stat
of the dynamical equations; the value ofv* then follows
from an asymptotic analysis of the linearized dynami
equations@5#. However, in all cases, in which one cann
ignore the fact that matter is made of discrete particles,
cannot perturb the unstable state by any arbitrary sm
amount, because this amount must be at least one ‘‘qu
tum’’ of particle large.

To model this discrete nature of the constituent partic
by means of a continuum equation, Brunet and Derrida@6#
studied the nonlinear diffusion equation

]f

]t
5

]2f

]x2
1 f ~f! ~1!

with a cutoff e in the growth termf (f),

f ~f!5Q~f2e!@f2fn#, n.1, e.g., n52 or 3.
~2!
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Without the cutoff, i.e., fore50, this equation is the well-
known nonlinear diffusion equation, which has been us
since long as the simplest model to study front propaga
into an unstable state@9–11#. Brunet and Derrida@6# found
that the asymptotic front speedvas goes as

vas5ve.v* 2
p2

ln2e
, ~3!

wherev* 52 is the asymptotic speed of the correspond
pulled front of Eq.~1! for e50. The above formula show
that the front speedve converges very slowly to the
asymptotic speedv* ; this illustrates that unlike pushe
fronts, pulled fronts are very sensitive to small changes in
dynamics of the phase into which they propagate.

In comparing with stochastic models of particles on a l
tice, Brunet and Derrida associated the cutoffe with 1/N,
whereN is the average number of particles in a correlati
region in the saturation phase behind the front@6#. Although
the validity of this identification has been the matter of so
debate, it appears that Eq.~3! with e51/N does give the
proper asymptotic correction to the front speed even for v
large N. We refer to the literature@6,12–15# for a further
discussion of the applicability of these ideas to stocha
models.

It is intuitively clear that as soon as we introduce th
cutoff, fronts that are pulled fore50 must actually become
weakly pushed as soon ase.0. After all, any perturbation
around the valuef50 does not start to grow until the loca
f value crossese, so strictly speaking, the linear spreadin
velocity v* (e) of arbitrarily small linear perturbations abou
the statef50 vanishes. Asve.v* (e)50, one clearly must
have a weakly pushed front. With this idea in mind, it
natural to address the convergence of the front speed to
asymptotic value, since it is well known that the speed
pulled fronts relaxes algebraically slowly to the asympto
valuev* @3–6#, while pushed fronts normally have expone
tial relaxation to their asymptotic speed.

These observations motivate us to investigate here
slowest relaxation modes of the stability spectrum of fro
for the nonlinear diffusion equation~1!, with a cutoffe in the
©2002 The American Physical Society02-1
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BRIEF REPORTS PHYSICAL REVIEW E 65 057202
growth term~2!. We calculate these relaxation modes expl
itly for small e, and find that the slowest relaxation timestm
are given by

tm
21.

@~m11!221#p2

ln2e
, m51,2 . . . . ~4!

Hence, the relaxation times of the front velocity and profi
approach zero ase→0, but only logarithmically slowly. Jus
like the corrections to the front speed for practical values
e are often significant, so is the exponential relaxation,
example, fore51025, the longest relaxation timet1 is about
4.48. Thus, while in the absence of a cutoff the front spee
approached very slowly, only as 3/2t where t is the time
@3–6#, with a realistic value ofe, the front speed converge
relatively quickly to the asymptotic value.

II. STABILITY ANALYSIS OF THE ASYMPTOTIC FRONT
SOLUTION

A. The stability operator

The asymptotic shape of the front is a uniformly transl
ing front solutionfe(x,t) which is a function ofonly the
comoving coordinatej5x2vet, and which is obtained by
solving the ordinary differential equation

2ve

dfe~j!

dj
5

d2fe~j!

dj2
1 f „fe~j!…. ~5!

In carrying out the linear stability analysis of this front sol
tion, it is convenient to follow the standard route of tran
forming the linear eigenvalue problem into a Schro¨dinger
eigenvalue problem@2,5#. We consider a functionf(x,t),
which is infinitesimally different fromfe(j)[fe(x2vet) in
the comoving frame, i.e.,f(x,t)5fe(x2vet)1h(j,t).
Upon linearizing the dynamical equation in the comovi
frame, one finds that the functionh(x,t)[h(j,t) obeys the
following equation:

]h

]t
5ve

]h

]j
1

]2h

]j2
1

d f ~f!

df
uf5fe

h. ~6!

Since this equation is linear inh, the question of stability can
be answered by studying the spectrum of the temporal eig
values. To this end, we expressh(j,t) as

h~j,t !5e2Ete2vej/2cE~j!, ~7!

which converts Eq.~6! to the following one-dimensiona
Schrödinger equation for a particle in a potential~with
\2/2m51),

F2
d2

dj2
1

ve
2

4
2

d f ~f!

df Uf5feGcE~j!5EcE~j!. ~8!

In Eq. ~8!, the quantity

V~j!5Fve
2

4
2

d f ~f!

df
Uf5fe

G
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plays the role of the potential. If we now denote byj0 the
coordinate of the point wherefe(j)5e, then for the nonlin-
earity ~2! the potentialV(j) is easily seen to have the form

V~j!5Fve
2

4
211nfe

n21~j!GQ~j02j!2
1

ve
d~j2j0!

1
ve

2

4
Q~j2j0!. ~9!

Thed-function in Eq.~9! appears from the functional deriva
tive in Eq. ~6!, since there is a discontinuity of magnitudee
in f (f) at f5e. This discontinuity contributes an amoun
equal to

fe

dQ~fe2e!

dfe
5fed~fe2e!5

e

ufe8~j0!u
d~j2j0!

~10!

to V(j). If we combine this with the fact thatufe8(j0)u
5eve , which follows immediately from the fact that on
simply hasfe(j)5ee2ve(j2j0) for j>j0, one obtains the
d-function term in the potential given in Eq.~9!.

The form of the potentialV(j) is sketched in Fig. 1. No-
tice thatfe(j) is a monotonically increasing function frome
at j0 towards the left, asymptotically reaching the value 1 a
j→2`. As a result, forj,j0 , V(j) also increases mono
tonically towards the left, from ve

2/4211nen21

.2p2/ln2e at j5j02 , to (n2p2/ln2e)'n as j→2`. At
j0, there is an attractived-function potential of strength
1/ve'1/2 and a finite step of height 1. The crucial feature
the stability analysis below is the fact thatV(j) stays re-
markably flat at a value2p2/ln2e over a distance (j02j1)
.u ln eu, and then on the left ofj1, it increases to the value
'n, over a distance of order unity. As argued in Sec. II
this is a consequence of the nature of the solutionfe(j).

If there are negative eigenvalues of the above Schro¨dinger
equation, then according to Eq.~7!, h(j,t) grows in time in
the comoving frame, i.e., the front solutionfe(j) is un-
stable. On the other hand, if there are no negative eigen
ues, then the asymptotic front shape is stable, and the s
trum of the eigenvalues then determines the nature of
relaxation off(x,t) to the solutionfe(j).

FIG. 1. The potentialV(j) in the Schro¨dinger operator obtained
in the stability analysis.
2-2
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BRIEF REPORTS PHYSICAL REVIEW E 65 057202
The full spectrum in general depends on the bound
conditions imposed on the eigenfunctionscE . Here we con-
sider only localized perturbations, for which we need to ha
h(j,t)→0 asj→6`. Due to the exponential factor in Eq
~7!, any eigenfunctioncE that vanishes asj→` is consistent
with vanishing h towards the right@16#. However, for j
→2`, the eigenfunctionscE need to vanish exponentiall
fast with a sufficiently large exponent, so that when it
combined with the exponentially diverging terme2ve/2, they
are still consistent with the requirement thath vanishes for
j→2`. For the lowest ‘‘energy’’ eigenvalues, which w
will investigate below, we will demonstrate that these
quirements are obeyed.

B. Shape offe„j… and the zero mode of the stability operator

From the form in the potential, it is clear that the lowe
‘‘energy’’ eigenmodes, i.e., the slowest relaxation eige
modes, are the ones that are confined to the bottom of
potential. This is the region where the nonlinear terms p
portional tofn21 are negligible, and which is often calle
the ‘‘leading edge’’ of the front profile. Fore!1, the solu-
tion of fe(j) in this leading edge is given by@6#

fe~j!'
u ln eu

p
sin@zij#e2zrj for j1&j<j0.u ln eu

5ee2ve(j2j0) for j>j0. ~11!

Here, zi'p/u ln eu and zr511O(e2). The values offe(j)
and dfe /dj are continuous atj5j0, and fe(j0)5e. Al-
though Eqs.~11! and~12! suggest at first sight that thefe(j)
has a node atj50, Eq.~11! is only valid in the leading edge
and fe(j) crosses over to other behavior aroundj1, which
makes the front solutionfe(j) a monotonically decreasin
function of j. The value ofj1 is set by the criterion tha
aroundj1 the nonlinear terms off „fe(j)… start to become
significant, just likej1 marks the point where the potenti
V(j) crosses over from the asymptotic value on the left
the bottom value. The coordinatej1, therefore, is more or
less fixed; on the other hand,j0 asymptotically diverges a
.u ln eu for smalle, making (j02j1) also diverge as.u ln eu.
This is an immediate consequence of the overall expone
decay offe(j) in j at the leading edge.

From the form in the potential, it is clear that the lowe
‘‘energy’’ eigenmodes, i.e., the slowest relaxation eige
modes, are the ones that are confined to the bottom of
potential. We notice that among these modes, invaria
there is a zero mode of the stability operator that is ass
ated with the uniformly translating front solution of a d
namical equation, e.g., Eq.~1!: sincefe(j) and fe(j1a)
are solutions of Eq.~5! for any arbitrarya, we find by ex-
panding to first order ina that c0(j)5evej/2dfe /dj is a
solution of Eq.~8! with eigenvalueE50. From the result
~11! for the asymptotic front solution, we then immediate
get to dominant order

c0; sinzij, zi.p/u ln eu, j1&j<j0 . ~12!
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Furthermore, sincefe(j) is a monotonically decreasin
function ofj, the solutionc0(j)5evej/2dfe /dj is nodeless.
Since we know from elementary quantum mechanics that
nodeless eigenfunction has the lowest eigenvalue, this
plies that all theother eigenvalues of Eq.~8! are positive,
i.e., the solutionfe(j) is stable.

The spectrum of eigenvalues of Eq.~8! for E.0, there-
fore, is going to determine the decay property of localiz
perturbationsh(j,t) in time. We notice that forE.ve

2/4
'1, the value of the potential on the far right, the spectr
of eigenvalues will be continuous. However, we are parti
larly interested in the smallest eigenvaluesEm.0 for small
m, since these are the eigenmodes that decay the slowe
time. These are the eigenvalues associated with bound s
in the potential well.

C. Lowest eigenmodes and eigenvalues fore™1

As e→0, the bottom well of the potential becomes ve
wide: its width diverges asu ln eu. As we know from elemen-
tary quantum mechanics, the lowest ‘‘energy’’ eigenfunctio
then become essentially sine or cosine waves in the pote
well with small wave numbersk and correspondingly smal
‘‘energy’’ eigenvalues.

Based on the fact that the potentialV(j) on the left rises
over length scales of order unity, we now make an appro
mation. In the limit that the bottom well is very wide and th
k values of the bound state eigenmodes very small, it
comes an increasingly good and an asymptotically cor
approximation to view the left wall of the well simply as
steep step, as sketched in Fig. 2—we thus approximate
potential by

V0~j!5n@12Q~j!#2
p2

ln2e
Q~j!@12Q~j2j0!#

2
1

2
d~j2j0!1Q~j2j0!. ~13!

On the right hand side, there is an attractived-function
potential at the point where the potential shows a step t
value close to 1. It is easy to check that the prefactor of

FIG. 2. The approximate potentialV0(j) that can be used for
calculating the low-lying modes for large widths of the bottom we
i.e., for smalle.
2-3
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BRIEF REPORTS PHYSICAL REVIEW E 65 057202
d-function of 1/2 is not strong enough to give rise to bou
states withE,0, and as a result, for very small values ofe,
the low-lying eigenmodes approach sine waves with node
the position of the walls of the potential@17#

cm.sin@km~j2j1!#. ~14!

The condition that these solutions have nodes at the r
edge of the well then yields

km.
~m11!p

j02j1
.

~m11!p

u ln eu
, ~15!

implying that the corresponding eigenvalues are given b

Em.
@~m11!221#p2

ln2e
, m50,1,2, . . . . ~16!

Here, the first term between square brackets comes from
‘‘kinetic energy’’ term k2, while the second term originate
from the value of the potential at the bottom.

Note that form50, the eigenmode sink0 with eigenvalue
E0 is indeed the same as the zero eigenmode of Eq.~12! with
ge

ys

w

05720
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k05zi , which we calculated from the shape of the fro
solution fe in the leading edge. Besides verifying the co
sistency of our approach, this also confirms that there are
corrections to Eq.~16! for m50: for m50 it will yield an
eigenvalue zero to all orders ine. Therefore, the smalles
nonzero eigenvalue, which governs the relaxation of
front velocity and profile to the asymptotic ones, isE1 with
relaxation timet1 given by

t1
215E1.

3p2

ln2e
. ~17!

Equation~16! also confirms that ase→0, the gap between
the spectral lines decreases as ln22e, which is consistent with
the fact that for a pulled fronte50 and the spectrum be
comes gapless. Also notice that for the eigenvalues in
~16!, the corresponding eigenmodescE(j) decay as exp
(2Anuju) for j→2` and as exp(2vej/2) for j→`, which
make evej/2cE(j) go to zero for j→6`, satisfying the
boundary conditions discussed previously at the end of S
II A.
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