4,582 research outputs found

    The Topology of Foliations Formed by the Generic K-Orbits of a Subclass of the Indecomposable MD5-Groups

    Full text link
    The present paper is a continuation of [13], [14] of the authors. Specifically, the paper considers the MD5-foliations associated to connected and simply connected MD5-groups such that their Lie algebras have 4-dimensional commutative derived ideal. In the paper, we give the topological classification of all considered MD5-foliations. A description of these foliations by certain fibrations or suitable actions of R2\mathbb{R}^{2} and the Connes' C*-algebras of the foliations which come from fibrations are also given in the paper.Comment: 20 pages, no figur

    On the theory of the vortex state in the Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) phase

    Get PDF
    We demonstrate that the vortex state in the Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) phase may be very different depending on the field orientation relative to the crystalline axes. We calculate numerically the upper critical field near the tricritical point taking into account the modulation of the order parameter along the magnetic field as well as the higher Landau levels. For s-wave superconductors with the anisotropy described by an elliptical Fermi surface we propose a general scheme of the analysis of the angular dependence of upper critical field at all temperatures on the basis of the exact solution for the order parameter. Our results show that the transitions (with tilting magnetic field) between different types of mixed states may be a salient feature of the FFLO phase. Moreover we discuss the reasons for the first-order phase transition into the FFLO state in the case of CeCoIn5 compound.Comment: 7 figure

    Quantum mechanics in multiply connected spaces

    Get PDF
    This paper analyses quantum mechanics in multiply connected spaces. It is shown that the multiple connectedness of the configuration space of a physical system can determine the quantum nature of physical observables, such as the angular momentum. In particular, quantum mechanics in compactified Kaluza-Klein spaces is examined. These compactified spaces give rise to an additional angular momentum which can adopt half-integer values and, therefore, may be identified with the intrinsic spin of a quantum particle.Comment: Latex 15 page

    Moloney murine leukemia virus decay mediated by retroviral reverse transcriptase degradation of genomic RNA

    Get PDF
    AbstractRetroviral vectors are powerful tools for the introduction of transgenes into mammalian cells and for long-term gene expression. However, their application is often limited by a rapid loss of bioactivity: retroviruses spontaneously loose activity at 37 °C, with a half-life of 4 to 9 h depending on the retrovirus type. We sought to determine which components of the retrovirus are responsible for this loss in bioactivity and to obtain a quantitative characterization of their stability. To this end, we focused on RNA and viral proteins, two major components that we hypothesized may undergo degradation and negatively influence viral infectivity. Reverse transcription PCR (RT-PCR) targeting RNA encoding portions of the viral genome clearly demonstrated time-dependent degradation of RNA which correlated with the loss in viral bioactivity. Circular dichroism spectroscopy, SDS-PAGE and two-dimensional SDS-PAGE analyses of viral proteins did not show any change in secondary structure or evidence of proteolysis. The mechanism underlying the degradation of viral RNA was investigated by site-directed mutagenesis of proteins encoded by the viral genome. Reverse transcriptase and protease mutants exhibited enhanced RNA stability in comparison to wild type recombinant virus, suggesting that the degradation of RNA, and the corresponding virus loss of activity, is mediated by the reverse transcriptase enzyme

    Differential diagnosis of dna viruses related to reproductive disorder on sows by multiplex-pcr technique

    Get PDF
    The newly emerged diseases caused by ASFV and PCV3 and their confirmed prevelance in Vietnam whereas most of available common commercial methods such as ELISA or realtime PCR designed for detecting single pathogen per reaction, highlighted a necessity for another diagnostic method to simultaneously detect and differentiate DNA viruses that are related to reproductive failures in sow herds including PCV2, PCV3, PPV, ASFV. In this communication, a diagnostic multiplex-PCR (mPCR) was established with pathogen-specific primers selected from previous studies and another set of primers designed for COX1 gene serving as an internal amplification control (IAC). The predicted products of PCV2, PCV3, PPV, ASFV and IAC were 702 bp, 223 bp, 380 bp, 278 bp and 463 bp, respectively. After optimization, the mPCR functioned specifically at 62°C. Results revealed the consistent detection limit at 100 copies/gene/reaction. In application, 185 serum samples from sows were used to examine the presence of the related pathogens. mPCR results showed that the mono-infection rate of PCV2, PCV3, PPV, and ASFV was 0% (0/185), 40% (74/185), 28.1% (52/185), and 48.1% (89/185), respectively. Regarding coinfection rate, the data indicated that coinfections of 2, 3 and 4 pathogens were 20%, 8.1% and 0% accordingly. In conclusion, the mPCR assay was successfully established and ready to serve for diagnosis of PCV2, PCV3, PPV and ASFV infection in reality with high specificity and sensitivity. It is a good contribution to a better understanding of the epidemiology of these diseases in swine

    The burden and characteristics of enteric fever at a healthcare facility in a densely populated area of Kathmandu

    Get PDF
    Enteric fever, caused by Salmonella enterica serovars Typhi and Paratyphi A (S. Typhi and S. Paratyphi A) remains a major public health problem in many settings. The disease is limited to locations with poor sanitation which facilitates the transmission of the infecting organisms. Efficacious and inexpensive vaccines are available for S. Typhi, yet are not commonly deployed to control the disease. Lack of vaccination is due partly to uncertainty of the disease burden arising from a paucity of epidemiological information in key locations. We have collected and analyzed data from 3,898 cases of blood culture-confirmed enteric fever from Patan Hospital in Lalitpur Sub-Metropolitan City (LSMC), between June 2005 and May 2009. Demographic data was available for a subset of these patients (n = 527) that were resident in LSMC and who were enrolled in trials. We show a considerable burden of enteric fever caused by S. Typhi (2,672; 68.5%) and S. Paratyphi A (1,226; 31.5%) at this Hospital over a four year period, which correlate with seasonal fluctuations in rainfall. We found that local population density was not related to incidence and we identified a focus of infections in the east of LSMC. With data from patients resident in LSMC we found that the median age of those with S. Typhi (16 years) was significantly less than S. Paratyphi A (20 years) and that males aged 15 to 25 were disproportionately infected. Our findings provide a snapshot into the epidemiological patterns of enteric fever in Kathmandu. The uneven distribution of enteric fever patients within the population suggests local variation in risk factors, such as contaminated drinking water. These findings are important for initiating a vaccination scheme and improvements in sanitation. We suggest any such intervention should be implemented throughout the LSMC area.This work was supported by The Wellcome Trust, Euston Road, London, United Kingdom. MFB is supported by the Medical Research Council (grant G0600718). SB is supported by an OAK foundation fellowship through Oxford University

    Fixing the BMS Frame of Numerical Relativity Waveforms with BMS Charges

    Get PDF
    The Bondi-van der Burg-Metzner-Sachs (BMS) group, which uniquely describes the symmetries of asymptotic infinity and therefore of the gravitational waves that propagate there, has become increasingly important for accurate modeling of waveforms. In particular, waveform models, such as post-Newtonian (PN) expressions, numerical relativity (NR), and black hole perturbation theory, produce results that are in different BMS frames. Consequently, to build a model for the waveforms produced during the merging of compact objects, which ideally would be a hybridization of PN, NR, and black hole perturbation theory, one needs a fast and robust method for fixing the BMS freedoms. In this work, we present the first means of fixing the entire BMS freedom of NR waveforms to match the frame of either PN waveforms or black hole perturbation theory. We achieve this by finding the BMS transformations that change certain charges in a prescribed way -- e.g., finding the center-of-mass transformation that maps the center-of-mass charge to a mean of zero. We find that this new method is 20 times faster, and more correct when mapping to the superrest frame, than previous methods that relied on optimization algorithms. Furthermore, in the course of developing this charge-based frame fixing method, we compute the PN expression for the Moreschi supermomentum to 3PN order without spins and 2PN order with spins. This Moreschi supermomentum is effectively equivalent to the energy flux or the null memory contribution at future null infinity I+\mathscr{I}^{+}. From this PN calculation, we also compute oscillatory (m0m\not=0 modes) and spin-dependent memory terms that have not been identified previously or have been missing from strain expressions in the post-Newtonian literature. <br
    corecore