331 research outputs found
Optical control of the refractive index of a single atom
We experimentally demonstrate the elementary case of electromagnetically
induced transparency (EIT) with a single atom inside an optical cavity probed
by a weak field. We observe the modification of the dispersive and absorptive
properties of the atom by changing the frequency of a control light field.
Moreover, a strong cooling effect has been observed at two-photon resonance,
increasing the storage time of our atoms twenty-fold to about 16 seconds. Our
result points towards all-optical switching with single photons
Precision preparation of strings of trapped neutral atoms
We have recently demonstrated the creation of regular strings of neutral
caesium atoms in a standing wave optical dipole trap using optical tweezers [Y.
Miroshnychenko et al., Nature, in press (2006)]. The rearrangement is realized
atom-by-atom, extracting an atom and re-inserting it at the desired position
with sub-micrometer resolution. We describe our experimental setup and present
detailed measurements as well as simple analytical models for the resolution of
the extraction process, for the precision of the insertion, and for heating
processes. We compare two different methods of insertion, one of which permits
the placement of two atoms into one optical micropotential. The theoretical
models largely explain our experimental results and allow us to identify the
main limiting factors for the precision and efficiency of the manipulations.
Strategies for future improvements are discussed.Comment: 25 pages, 18 figure
Adiabatic Quantum State Manipulation of Single Trapped Atoms
We use microwave induced adiabatic passages for selective spin flips within a
string of optically trapped individual neutral Cs atoms. We
position-dependently shift the atomic transition frequency with a magnetic
field gradient. To flip the spin of a selected atom, we optically measure its
position and sweep the microwave frequency across its respective resonance
frequency. We analyze the addressing resolution and the experimental robustness
of this scheme. Furthermore, we show that adiabatic spin flips can also be
induced with a fixed microwave frequency by deterministically transporting the
atoms across the position of resonance.Comment: 4 pages, 4 figure
Optical binding in nanoparticle assembly: Potential energy landscapes
Optical binding is an optomechanical effect exhibited by systems of micro- and nanoparticles, suitably irradiated with off-resonance laser light. Physically distinct from standing-wave and other forms of holographic optical traps, the phenomenon arises as a result of an interparticle coupling with individual radiation modes, leading to optically induced modifications to Casmir-Polder interactions. To better understand how this mechanism leads to the observed assemblies and formation of patterns in nanoparticles, we develop a theory in terms of optically induced energy landscapes exhibiting the three-dimensional form of the potential energy field. It is shown in detail that the positioning and magnitude of local energy maxima and minima depend on the configuration of each particle pair, with regards to the polarization and wave vector of the laser light. The analysis reveals how the positioning of local minima determines the energetically most favorable locations for the addition of a third particle to each equilibrium pair. It is also demonstrated how the result of such an addition subtly modifies the energy landscape that will, in turn, determine the optimum location for further particle additions. As such, this development represents a rigorous and general formulation of the theory, paving the way toward full comprehension of nanoparticle assembly based on optical binding
Imprinting Patterns of Neutral Atoms in an Optical Lattice using Magnetic Resonance Techniques
We prepare arbitrary patterns of neutral atoms in a one-dimensional (1D)
optical lattice with single-site precision using microwave radiation in a
magnetic field gradient. We give a detailed account of the current limitations
and propose methods to overcome them. Our results have direct relevance for
addressing of planes, strings or single atoms in higher dimensional optical
lattices for quantum information processing or quantum simulations with
standard methods in current experiments. Furthermore, our findings pave the way
for arbitrary single qubit control with single site resolution.Comment: 9 pages, 7 figure
Coherent imaging of extended objects
When used with coherent light, optical imaging systems, even
diffraction-limited, are inherently unable to reproduce both the amplitude and
the phase of a two-dimensional field distribution because their impulse
response function varies slowly from point to point (a property known as
non-isoplanatism). For sufficiently small objects, this usually results in a
phase distortion and has no impact on the measured intensity. Here, we show
that the intensity distribution can also be dramatically distorted when objects
of large extension or of special shapes are imaged. We illustrate the problem
using two simple examples: the pinhole camera and the aberration-free thin
lens. The effects predicted by our theorical analysis are also confirmed by
experimental observations.Comment: 10 pages, 9 figures, submitted to Optics Communication
Bayesian feedback control of a two-atom spin-state in an atom-cavity system
We experimentally demonstrate real-time feedback control of the joint
spin-state of two neutral Caesium atoms inside a high finesse optical cavity.
The quantum states are discriminated by their different cavity transmission
levels. A Bayesian update formalism is used to estimate state occupation
probabilities as well as transition rates. We stabilize the balanced two-atom
mixed state, which is deterministically inaccessible, via feedback control and
find very good agreement with Monte-Carlo simulations. On average, the feedback
loops achieves near optimal conditions by steering the system to the target
state marginally exceeding the time to retrieve information about its state.Comment: 4 pages, 4 figure
Quantum bit detector
We propose and analyze an experimental scheme of quantum nondemolition
detection of monophotonic and vacuum states in a superconductive toroidal
cavity by means of Rydberg atoms.Comment: 4 pages, 3 figure
Influence of the state of light on the optically induced interparticle interaction
A general expression for the energy of interparticle interaction induced by an arbitrary mode of light is determined using quantum electrodynamics, and it is shown that the Casimir-Polder potential is included within this quantum result. Equations are also derived for the corresponding coupling induced by multimode number states of light, and the dependence of the pair energy on the Poynting vector and polarization state is determined. Attention is then focused on the interactions between particles trapped in counterpropagating coherent beams, both with and without interference, and it is shown that the results afford insights into the multiparticle structures that can be optically fabricated with counterpropagating input. Brief consideration is also given to the effect of squeezing the optical coherent state. Extending previous studies of optical binding in Laguerre-Gaussian beams, results are given for the case of particles trapped at radially different locations within the beam structure. Finally, consideration is given to interparticle interactions induced by broadband light, and it is shown how the length of optically fabricated particle chains can be controlled by the use of wavelength filters
Quantum Walk in Position Space with Single Optically Trapped Atoms
The quantum walk is the quantum analogue of the well-known random walk, which
forms the basis for models and applications in many realms of science. Its
properties are markedly different from the classical counterpart and might lead
to extensive applications in quantum information science. In our experiment, we
implemented a quantum walk on the line with single neutral atoms by
deterministically delocalizing them over the sites of a one-dimensional
spin-dependent optical lattice. With the use of site-resolved fluorescence
imaging, the final wave function is characterized by local quantum state
tomography, and its spatial coherence is demonstrated. Our system allows the
observation of the quantum-to-classical transition and paves the way for
applications, such as quantum cellular automata.Comment: 7 pages, 4 figure
- …