478 research outputs found

    Acid-base titrations for polyacids: Significance of the pK sub a and parameters in the Kern equation

    Get PDF
    A new method is suggested for calculating the dissociation constants of polyvalent acids, especially polymeric acids. In qualitative form the most significant characteristics of the titration curves are demonstrated and identified which are obtained when titrating the solutions of such acids with a standard base potentiometrically

    Selective masking and demasking for the stepwise complexometric determination of aluminium, lead and zinc from the same solution

    Get PDF
    Background: A complexometric method based on selective masking and de-masking has been developed for the rapid determination of aluminium, lead and zinc from the same solution in glass and glass frit samples. The determination is carried out using potassium cyanide to mask zinc, and excess disodium salt of EDTA to mask lead and aluminium. The excess EDTA was titrated with standard Mn(II)SO(4) solution using Erichrome Black-T as the indicator. Subsequently selective de-masking agents - triethanolamine, 2,3-dimercaptopropanol and a formaldehyde/acetone mixture - were used to determine quantities of aluminium, lead and zinc in a stepwise and selective manner. Results: The accuracy of the method was established by analysing glass certified reference material NBS 1412. The standard deviation of the measurements, calculated by analysing five replicates of each sample, was found to be less than 1.5% for the method proposed. Conclusion: The novelty of the method lies in its simplicity and accuracy afforded by there not being a need for a prior separation or instrumentation. The proposed method was found to be highly selective for the precise determination of aluminum, zinc and lead in the routine analysis of glass batch and allied materials

    Genetic instability and anti-HPV immune response as drivers of infertility associated with HPV infection

    Get PDF
    Funding Information: RFBR grant 17–54-30002, Ministry of Science and Higher Education of the Russian Federation (Agreement No. 075–15–2019-1660) to Olga Smirnova. Publisher Copyright: © 2021, The Author(s).Human papillomavirus (HPV) is a sexually transmitted infection common among men and women of reproductive age worldwide. HPV viruses are associated with epithelial lesions and cancers. HPV infections have been shown to be significantly associated with many adverse effects in reproductive function. Infection with HPVs, specifically of high-oncogenic risk types (HR HPVs), affects different stages of human reproduction, resulting in a series of adverse outcomes: 1) reduction of male fertility (male infertility), characterized by qualitative and quantitative semen alterations; 2) impairment of couple fertility with increase of blastocyst apoptosis and reduction of endometrial implantation of trophoblastic cells; 3) defects of embryos and fetal development, with increase of spontaneous abortion and spontaneous preterm birth. The actual molecular mechanism(s) by which HPV infection is involved remain unclear. HPV-associated infertility as Janus, has two faces: one reflecting anti-HPV immunity, and the other, direct pathogenic effects of HPVs, specifically, of HR HPVs on the infected/HPV-replicating cells. Adverse effects observed for HR HPVs differ depending on the genotype of infecting virus, reflecting differential response of the host immune system as well as functional differences between HPVs and their individual proteins/antigens, including their ability to induce genetic instability/DNA damage. Review summarizes HPV involvement in all reproductive stages, evaluate the adverse role(s) played by HPVs, and identifies mechanisms of viral pathogenicity, common as well as specific for each stage of the reproduction process.publishersversionPeer reviewe

    Anaerobiosis revisited: growth of Saccharomyces cerevisiae under extremely low oxygen availability

    Get PDF
    The budding yeast Saccharomyces cerevisiae plays an important role in biotechnological applications, ranging from fuel ethanol to recombinant protein production. It is also a model organism for studies on cell physiology and genetic regulation. Its ability to grow under anaerobic conditions is of interest in many industrial applications. Unlike industrial bioreactors with their low surface area relative to volume, ensuring a complete anaerobic atmosphere during microbial cultivations in the laboratory is rather difficult. Tiny amounts of O2 that enter the system can vastly influence product yields and microbial physiology. A common procedure in the laboratory is to sparge the culture vessel with ultrapure N2 gas; together with the use of butyl rubber stoppers and norprene tubing, O2 diffusion into the system can be strongly minimized. With insights from some studies conducted in our laboratory, we explore the question ‘how anaerobic is anaerobiosis?’. We briefly discuss the role of O2 in non-respiratory pathways in S. cerevisiae and provide a systematic survey of the attempts made thus far to cultivate yeast under anaerobic conditions. We conclude that very few data exist on the physiology of S. cerevisiae under anaerobiosis in the absence of the anaerobic growth factors ergosterol and unsaturated fatty acids. Anaerobicity should be treated as a relative condition since complete anaerobiosis is hardly achievable in the laboratory. Ideally, researchers should provide all the details of their anaerobic set-up, to ensure reproducibility of results among different laboratories. A correction to this article is available online at http://eprints.whiterose.ac.uk/131930/ https://doi.org/10.1007/s00253-018-9036-

    Milk: an epigenetic amplifier of FTO-mediated transcription? Implications for Western diseases

    Full text link
    corecore