9,982 research outputs found

    Information-theoretic bound on the entropy production to maintain a classical nonequilibrium distribution using ancillary control

    Full text link
    There are many functional contexts where it is desirable to maintain a mesoscopic system in a nonequilibrium state. However, such control requires an inherent energy dissipation. In this article, we unify and extend a number of works on the minimum energetic cost to maintain a mesoscopic system in a prescribed nonequilibrium distribution using ancillary control. For a variety of control mechanisms, we find that the minimum amount of energy dissipation necessary can be cast as an information-theoretic measure of distinguishability between the target nonequilibrium state and the underlying equilibrium distribution. This work offers quantitative insight into the intuitive idea that more energy is needed to maintain a system farther from equilibrium.Comment: 6 pages, 2 figure

    Position-dependent exact-exchange energy for slabs and semi-infinite jellium

    Get PDF
    The position-dependent exact-exchange energy per particle Δx(z)\varepsilon_x(z) (defined as the interaction between a given electron at zz and its exact-exchange hole) at metal surfaces is investigated, by using either jellium slabs or the semi-infinite (SI) jellium model. For jellium slabs, we prove analytically and numerically that in the vacuum region far away from the surface ΔxSlab(z→∞)→−e2/2z\varepsilon_{x}^{\text{Slab}}(z \to \infty) \to - e^{2}/2z, {\it independent} of the bulk electron density, which is exactly half the corresponding exact-exchange potential Vx(z→∞)→−e2/zV_{x}(z \to \infty) \to - e^2/z [Phys. Rev. Lett. {\bf 97}, 026802 (2006)] of density-functional theory, as occurs in the case of finite systems. The fitting of ΔxSlab(z)\varepsilon_{x}^{\text{Slab}}(z) to a physically motivated image-like expression is feasible, but the resulting location of the image plane shows strong finite-size oscillations every time a slab discrete energy level becomes occupied. For a semi-infinite jellium, the asymptotic behavior of ΔxSI(z)\varepsilon_{x}^{\text{SI}}(z) is somehow different. As in the case of jellium slabs ΔxSI(z→∞)\varepsilon_{x}^{\text{SI}}(z \to \infty) has an image-like behavior of the form ∝−e2/z\propto - e^2/z, but now with a density-dependent coefficient that in general differs from the slab universal coefficient 1/2. Our numerical estimates for this coefficient agree with two previous analytical estimates for the same. For an arbitrary finite thickness of a jellium slab, we find that the asymptotic limits of ΔxSlab(z)\varepsilon_{x}^{\text{Slab}}(z) and ΔxSI(z)\varepsilon_{x}^{\text{SI}}(z) only coincide in the low-density limit (rs→∞r_s \to \infty), where the density-dependent coefficient of the semi-infinite jellium approaches the slab {\it universal} coefficient 1/2.Comment: 26 pages, 7 figures, to appear in Phys. Rev.

    Modulation of individual components of gastric motor response to duodenal glucose

    Get PDF
    AIM: To evaluate individual components of the antro-pyloro-duodenal (APD) motor response to graded small intestinal glucose infusions in healthy humans. METHODS: APD manometry was performed in 15 healthy subjects (12 male; 40 ± 5 years, body mass index 26.5 ± 1.6 kg/m2) during four 20-min intraduodenal infusions of glucose at 0, 0.5, 1.0 and 1.5 kcal/min, in a randomised double-blinded fashion. Glucose solutions were infused at a rate of 1 mL/min and separated by 40-min “wash-out” period. Data are mean ± SE. Inferential analyses are repeated measure analysis of variance with Bonferroni post-hoc testing. RESULTS: At 0 kcal/min frequency of pressure waves were: antrum (7.5 ± 1.8 waves/20 min) and isolated pyloric pressure waves (IPPWs) (8.0 ± 2.3 waves/20 min) with pyloric tone (0.0 ± 0.9 mmHg). Intraduodenal glucose infusion acutely increased IPPW frequency (P < 0.001) and pyloric tone (P = 0.015), and decreased antral wave frequency (P = 0.007) in a dose-dependent fashion. A threshold for stimulation was observed at 1.0 kcal/min for pyloric phasic pressure waves (P = 0.002) and 1.5 kcal/min for pyloric tone and antral contractility. CONCLUSION: There is hierarchy for the activation of gastrointestinal motor responses to duodenal glucose infusion. An increase in IPPWs is the first response observed.Adam M Deane, Laura K Besanko, Carly M Burgstad, Marianne J Chapman, Michael Horowitz, Robert JL Frase

    Correlation of the Hippocampal theta rhythm to changes in hypothalamic temperature

    Get PDF
    Warming and cooling the preoptic anterior hypothalamic area in awake, loosely restrained rabbits was found to evoke theta rhythm. This is consistent with previous studies indicating that theta rhythm is a nonspecific response evoked by stimulation of several sensory modalities. Several studies have correlated theta rhythm with alertness. A neural pathway involving the hypothalamus, the hippocampus, the septal area, and the reticular formation is proposed. Thus, a role of this pathway may be to alert the animal to changes in its body temperature

    Dynamic properties in a family of competitive growing models

    Full text link
    The properties of a wide variety of growing models, generically called X/RDX/RD, are studied by means of numerical simulations and analytic developments. The study comprises the following XX models: Ballistic Deposition, Random Deposition with Surface Relaxation, Das Sarma-Tamboronea, Kim-Kosterlitz, Lai-Das Sarma, Wolf-Villain, Large Curvature, and three additional models that are variants of the Ballistic Deposition model. It is shown that after a growing regime, the interface width becomes saturated at a crossover time (tx2t_{x2}) that, by fixing the sample size, scales with pp according to tx2(p)∝p−y,(p>0)t_{x2}(p)\propto p^{-y}, \qquad (p > 0), where yy is an exponent. Also, the interface width at saturation (WsatW_{sat}) scales as Wsat(p)∝p−ή,(p>0)W_{sat}(p)\propto p^{-\delta}, \qquad (p > 0), where ÎŽ\delta is another exponent. It is proved that, in any dimension, the exponents ÎŽ\delta and yy obey the following relationship: ÎŽ=yÎČRD\delta = y \beta_{RD}, where ÎČRD=1/2\beta_{RD} = 1/2 is the growing exponent for RDRD. Furthermore, both exponents exhibit universality in the p→0p \to 0 limit. By mapping the behaviour of the average height difference of two neighbouring sites in discrete models of type X/RDX/RD and two kinds of random walks, we have determined the exact value of the exponent ÎŽ\delta. Finally, by linking four well-established universality classes (namely Edwards-Wilkinson, Kardar-Parisi-Zhang, Linear-MBE and Non-linear-MBE) with the properties of both random walks, eight different stochastic equations for all the competitive models studied are derived.Comment: 23 pages, 6 figures, Submitted to Phys. Rev.

    Designing optimal discrete-feedback thermodynamic engines

    Full text link
    Feedback can be utilized to convert information into useful work, making it an effective tool for increasing the performance of thermodynamic engines. Using feedback reversibility as a guiding principle, we devise a method for designing optimal feedback protocols for thermodynamic engines that extract all the information gained during feedback as work. Our method is based on the observation that in a feedback-reversible process the measurement and the time-reversal of the ensuing protocol both prepare the system in the same probabilistic state. We illustrate the utility of our method with two examples of the multi-particle Szilard engine.Comment: 15 pages, 5 figures, submitted to New J. Phy

    Unitarity, quasi-normal modes and the AdS_3/CFT_2 correspondence

    Full text link
    In general, black-hole perturbations are governed by a discrete spectrum of complex eigen-frequencies (quasi-normal modes). This signals the breakdown of unitarity. In asymptotically AdS spaces, this is puzzling because the corresponding CFT is unitary. To address this issue in three dimensions, we replace the BTZ black hole by a wormhole, following a suggestion by Solodukhin [hep-th/0406130]. We solve the wave equation for a massive scalar field and find an equation for the poles of the propagator. This equation yields a rich spectrum of {\em real} eigen-frequencies. We show that the throat of the wormhole is o(e−1/G)o(e^{-1/G}), where GG is Newton's constant. Thus, the quantum effects which might produce the wormhole are non-perturbative.Comment: 9 page

    Comments on Black Holes in String Theory

    Get PDF
    A very brief review is given of some of the developments leading to our current understanding of black holes in string theory. This is followed by a discussion of two possible misconceptions in this subject - one involving the stability of small black holes and the other involving scale radius duality. Finally, I describe some recent results concerning quasinormal modes of black holes in anti de Sitter spacetime, and their implications for strongly coupled conformal field theories (in various dimensions).Comment: 13 pages. Talk given at Strings '99, Potsdam, German

    Realistic Neutrino Opacities for Supernova Simulations With Correlations and Weak Magnetism

    Full text link
    Advances in neutrino transport allow realistic neutrino interactions to be incorporated into supernova simulations. We add tensor couplings to relativistic RPA calculations of neutrino opacities. Our results reproduce free-space neutrino-nucleon cross sections at low density, including weak magnetism and recoil corrections. In addition, our opacities are thermodynamically consistent with relativistic mean field equations of state. We find antineutrino mean free paths that are considerably larger then those for neutrinos. This difference depends little on density. In a supernova, this difference could lead to an average energy of ΜˉΌ\bar\nu_\mu that is larger than that for ΜΌ\nu_\mu by an amount that is comparable to the energy difference between ΜΌ\nu_\mu and Μˉe\bar\nu_eComment: 15 pages, 10 figures, submitted to PRC, minor changes to figs. (9,10

    A variational principle for stationary, axisymmetric solutions of Einstein's equations

    Full text link
    Stationary, axisymmetric, vacuum, solutions of Einstein's equations are obtained as critical points of the total mass among all axisymmetric and (t,ϕ)(t,\phi) symmetric initial data with fixed angular momentum. In this variational principle the mass is written as a positive definite integral over a spacelike hypersurface. It is also proved that if absolute minimum exists then it is equal to the absolute minimum of the mass among all maximal, axisymmetric, vacuum, initial data with fixed angular momentum. Arguments are given to support the conjecture that this minimum exists and is the extreme Kerr initial data.Comment: 21 page
    • 

    corecore