275 research outputs found
Mirror Position Determination for the Alignment of Cherenkov Telescopes
Imaging Atmospheric Cherenkov Telescopes (IACTs) need imaging optics with
large apertures to map the faint Cherenkov light emitted in extensive air
showers onto their image sensors. Segmented reflectors fulfill these needs
using mass produced and light weight mirror facets. However, as the overall
image is the sum of the individual mirror facet images, alignment is important.
Here we present a method to determine the mirror facet positions on a segmented
reflector in a very direct way. Our method reconstructs the mirror facet
positions from photographs and a laser distance meter measurement which goes
from the center of the image sensor plane to the center of each mirror facet.
We use our method to both align the mirror facet positions and to feed the
measured positions into our IACT simulation. We demonstrate our implementation
on the 4 m First Geiger-mode Avalanche Cherenkov Telescope (FACT).Comment: 11 figures, small ray tracing performance simulation, and
implementation demonstratio
Rapid development and persistence of efficient subglacial drainage under 900 m-thick ice in Greenland
Intensive study of the Greenland Ice Sheet's (GrIS) subglacial drainage has been motivated by its importance for ice dynamics and for nutrient/sediment export to coastal ecosystems. This has revealed consistent seasonal development of efficient subglacial drainage in the lower ablation area. While some hydrological models show qualitative agreement with field data, conflicting evidence (both field- and model-based) maintains uncertainty in the extent and rate of efficient drainage development under thick (∼1 km) ice. Here, we present the first simultaneous time series of directly-observed subglacial drainage evolution, supraglacial hydrology and ice dynamics over 11 weeks in a large GrIS catchment. We demonstrate development of a fast/efficient subglacial drainage system extending from the margin to beneath ice >900 m thick, which then persisted with little response to highly variable moulin inputs including extreme melt events and extended periods (2 weeks) of low melt input. This efficient system evolved within ∼3 weeks at a moulin initiated when a fracture intersected a supraglacial river (rather than hydrofracture and lake drainage). Ice flow response to surface melt inputs at this site follows a pattern commonly observed in the lower GrIS ablation area, and by assuming a strong relationship between ice dynamics and subglacial hydrology, we infer that efficient subglacial drainage evolution is widespread under 900 m-thick ice in west Greenland. This time series of tracer transit characteristics through a developing and then persistent efficient drainage system provides a unique data set with which to validate and constrain existing numerical drainage system models, extending their capability for simulating drainage system evolution under current and future conditionspublishedVersio
Ketogenic diet uncovers differential metabolic plasticity of brain cells
To maintain homeostasis, the body, including the brain, reprograms its metabolism in response to altered nutrition or disease. However, the consequences of these challenges for the energy metabolism of the different brain cell types remain unknown. Here, we generated a proteome atlas of the major central nervous system (CNS) cell types from young and adult mice, after feeding the therapeutically relevant low-carbohydrate, high-fat ketogenic diet (KD) and during neuroinflammation. Under steady-state conditions, CNS cell types prefer distinct modes of energy metabolism. Unexpectedly, the comparison with KD revealed distinct cell type–specific strategies to manage the altered availability of energy metabolites. Astrocytes and neurons but not oligodendrocytes demonstrated metabolic plasticity. Moreover, inflammatory demyelinating disease changed the neuronal metabolic signature in a similar direction as KD. Together, these findings highlight the importance of the metabolic cross-talk between CNS cells and between the periphery and the brain to manage altered nutrition and neurological disease
CIITA stimulation of transcription factor binding to major histocompatibility complex class II and associated promoters in vivo
CIITA is a master transactivator of the major histocompatibility complex class II genes, which are involved in antigen presentation. Defects in CIITA result in fatal immunodeficiencies. CIITA activation is also the control point for the induction of major histocompatibility complex class II and associated genes by interferon-γ, but CIITA does not bind directly to DNA. Expression of CIITA in G3A cells, which lack endogenous CIITA, followed by in vivo genomic footprinting, now reveals that CIITA is required for the assembly of transcription factor complexes on the promoters of this gene family, including DRA, Ii, and DMB. CIITA-dependent promoter assembly occurs in interferon-γ-inducible cell types, but not in B lymphocytes. Dissection of the CIITA protein indicates that transactivation and promoter loading are inseparable and reveal a requirement for a GTP binding motif. These findings suggest that CIITA may be a new class of transactivator
Contribución al conocimiento de Porosagrotis gypaetina (Guen.) (Lep.:Noctuidae)
p.15-22Este trabajo tiene por finalidad brindar una descripcion detallada de los diferentes estados de desarrollo, asi como de los estadios larvales, de Porosagrotis gypaetina (Guen.) y estimar sus principales parametros biologicos. Se trata de una oruga conocida vulgarmente como gusano pardo que frecuenta cultivos de alfalfa, trebol bianco, maiz y girasol y determinadas malezas. Los caracteres considerados para su identificacion fueron, en el huevo: numero y distribucion de costas; en la larva: pigmentacion, distribucion de manchas y cerdas corporales; en la pupa: tamaño, forma y color y caracteristicas del cremaster; y en el adulto: ubicacion y coloracion de maculas y nervaduras alares. La emergencia de imagos alcanzo su maximo en abril y mayo. El periodo embrionario se completo en 22 a 26 dias. Aproximadamente la mitad de las larvas cumplieron su ciclo en 6 estadios y las restantes en 7; la duracion total del periodo larval fue de 134 a 141 dias, sin considerar la forma prepupal e independientemente del numero de estadios. Las orugas permanecieron como prepupas durante la temporada estival (aproximadamente 161 dias). El estado pupal duro 40 a 57 dias. Las observaciones realizadas permiten expresar que, inediante los caracteres descriptos, es factible reconocer la especie a traves no solo de los adultos, sino de sus estados inmaduros. Posee una sola generacion anual; transcurre el inviemo como larva; el daño tipico de corte lo produce a partir del cuarto estadio larval
Measuring the optical point spread function of FACT using the Cherenkov camera
FACT, the First G-APD Cherenkov Telescope, is an Imaging Air Cherenkov Telescope (IACT) operating since 2011 at the Observatorio del Roque de los Muchachos on the Canary Island of La Palma. As typical for IACTs, its reflector is comprised of smaller mirror facets and not protected by a dome. In the case of FACT, 30 hexagonal facets form a total mirror area of 9:5m². Hence, it is crucial to monitor the optical properties of this system and realign the facets if necessary. Up to now, measuring the Point Spread Function of FACT required human interaction to mount a screen and an optical camera. In this contribution, a new method to measure the optical Point Spread Function using directly the Cherenkov camera of the telescope is presented. Inspired by the method radio telescopes use to determine their resolution, the telescope is pointed towards a fixed position on the trajectory of a star. During the star’s passage through the field of view, the camera is read out using a fixed rate. In each event, the pedestal variance is determined for each pixel. This value is directly correlated with the amount of night sky background light a pixel received. Translating the time of the measurement to the position of the star in the camera enables to determine the optical point spread function from this measurement. As the measurement is done for each pixel along the trajectory of the star, the Point Spread Function can be determined not only for the camera center but for the entire field of view. In this contribution, the new method will also be compared with the existing methods of determining the optical Point Spread Function: direct measurement with an optical camera and the width of Muon ring events.M. Noethe, J. Adam, M. L. Ahnen, D. Baack, M. Balbo, A. Biland, M. Blank, T. Bretz, K. Bruegge, J. Buss, A. Dmytriiev, D. Dorner, S. Einecke, D. Elsaesser, C. Hempfling, T. Herbst, D. Hildebrand, L. Kortmann, L. Linhoff, M. Mahlke, K. Mannheim, S. A. Mueller, D. Neise, A. Neronov, J. Oberkirch, A. Paravac, F. Pauss, W. Rhode, B. Schleicher, F. Schulz, A. Shukla, V. Sliusar, F. Temme, J. Thaele, R. Walte
FACT - Time-resolved blazar SEDs
Blazars are highly variable objects and their spectral energy distribution (SED) features two peaks. The emission at low energies is understood, however, the origin of the emission at TeV energies is strongly debated. While snapshots of SEDs usually can be explained with simple models, the evolution of SEDs challenges many models and allows for conclusions on the emission mechanisms. Leptonic models expect a correlation between the two peaks, while hadronic models can accommodate more complex correlations. To study time-resolved SEDs, we set up a target-of-opportunity program triggering high-resolution X-ray observations based on the monitoring at TeV energies by the First G-APD Cherenkov Telescope (FACT). To search for time lags and identify orphan flares, this is accompanied by X-ray monitoring with the Swift satellite. These observations provide an excellent multi-wavelength (MWL) data sample showing the temporal behaviour of the blazar emission along the electromagnetic spectrum. To constrain the origin of the TeV emission, we extract the temporal evolution of the low energy peak from Swift data and calculate the expected flux at TeV energies using a theoretical model. Comparing this to the flux measured by FACT, we want to conclude on the underlying physics. Results from more than five years of monitoring will be discussed.D. Dorner, J. Adam, M.L. Ahnen, D. Baack, M. Balbo, A. Biland, M. Blank, T. Bretz, a, K. Bruegge, M. Bulinski, J. Buss, A. Dmytriiev, S. Einecke, D. Elsaesser, C. Hempfling, T. Herbst, D. Hildebrand, L. Kortmann, L. Linhoff, M. Mahlke, a, K. Mannheim, S.A. Mueller, D. Neise, A. Neronov, M. Noethe, J. Oberkirch, A. Paravac, F. Pauss, W. Rhode, B. Schleicher, F. Schulz, A. Shukla, V. Sliusar, F. Temme, J. Thaele, R. Walter, FACT Collaboration, A. Kreikenbohm, K. Leite
FACT - Highlights from more than Five Years of Unbiased Monitoring at TeV Energies
The First G-APD Cherenkov Telescope (FACT) is monitoring blazars at TeV energies. Thanks to the observing strategy, the automatic operation and the usage of solid state photosensors (SiPM, aka G-APDs), the duty cycle of the instrument has been maximized and the observational gaps minimized. This provides a unprecedented, unbiased data sample of almost 9000~hours of data of which 2375 hours were taken in 2016. An automatic quick look analysis provides results with low latency on a public website. More than 40 alerts have been sent in the last three years based on this. To study the origin of the very high energy emission from blazars simultaneous multi-wavelength and multi-messenger observations are crucial to draw conclusions on the underlying emission mechanisms, e.g. to distinguish between leptonic and hadronic models. FACT not only participates in multi-wavelength studies, correlation studies with other instruments and multi-messenger studies, but also collects time-resolved spectral energy distributions using a target-of-opportunity program with X-ray satellites. At TeV energies, FACT provides an unprecedented, unbiased data sample. Using up to 1850 hours per source, the duty cycle of the sources and the characteristics of flares at TeV energies are studied. In the presentation, the highlights from more than five years of monitoring will be summarized including several flaring activities of Mrk 421, Mrk 501 and 1ES 1959+650.D. Dorner, J. Adam, M.L. Ahnen, D. Baack, M. Balbo, A. Biland, M. Blank, T. Bretz, a, K. Bruegge, M. Bulinski, J. Buss, A. Dmytriiev, S. Einecke, D. Elsaesser, C. Hempfling, T. Herbst, D. Hildebrand, L. Kortmann, L. Linhoff, M. Mahlke, a, K. Mannheim, S.A. Mueller, D. Neise, A. Neronov, M. Noethe, J. Oberkirch, A. Paravac, F. Pauss, W. Rhode, B. Schleicher, F. Schulz, A. Shukla, V. Sliusar, F. Temme, J. Thaele, R. Walte
High Content Image Analysis Identifies Novel Regulators of Synaptogenesis in a High-Throughput RNAi Screen of Primary Neurons
The formation of synapses, the specialized points of chemical communication between neurons, is a highly regulated developmental process fundamental to establishing normal brain circuitry. Perturbations of synapse formation and function causally contribute to human developmental and degenerative neuropsychiatric disorders, such as Alzheimer's disease, intellectual disability, and autism spectrum disorders. Many genes controlling synaptogenesis have been identified, but lack of facile experimental systems has made systematic discovery of regulators of synaptogenesis challenging. Thus, we created a high-throughput platform to study excitatory and inhibitory synapse development in primary neuronal cultures and used a lentiviral RNA interference library to identify novel regulators of synapse formation. This methodology is broadly applicable for high-throughput screening of genes and drugs that may rescue or improve synaptic dysfunction associated with cognitive function and neurological disorders.National Institutes of Health (U.S.) (MH095096)National Institutes of Health (U.S.) (R01 GM089652
Single photon extraction for FACT's SiPMs allows for novel IACT event representation
Imaging Atmospheric Cherenkov Telescopes provide large gamma-ray collection areas > 104 m2 and successfully probe the high energetic gamma-ray sky by observing extensive air-showers during the night. The First G-APD Cherenkov Telescope (FACT) explores silicon based photoelectric converters (called G-APDs or SiPMs) which provide more observation time with strong moonlight, a more stable photon gain over years of observations, and mechanically simpler imaging cameras. So far, the signal extraction methods used for FACT originate from sensors with no intrinsic quantized responses like photomultiplier tubes. This standard signal extraction is successfully used for the long time monitoring of the gamma-ray flux of bright blazars. However, we now challenge our classic signal extraction and explore single photon extraction methods to take advantage of the highly stable and quantized single photon responses of FACT’s SiPM sensors. Instead of having one main pulse with one arrival time and one photon equivalent extracted for each pixel, we extract the arrival times of all individual photons in a pixel’s time line which opens up a new dimension in time for representing extensive air-showers with an IACT.S. A. Mueller, J. Adam, M. L. Ahnen, D. Baack, M. Balbo, A. Biland, M. Blank, T. Bretz, K. Bruegge, J. Buss, A. Dmytriiev, D. Dorner, S. Einecke, D. Elsaesser, C. Hempfling, T. Herbst, D. Hildebrand, L. Kortmann, L. Linhoff, M. Mahlke, K. Mannheim, D. Neise, A. Neronov, M. Noethe, J. Oberkirch, A. Paravac, F. Pauss, W. Rhode, B. Schleicher, F. Schulz, A. Shukla, V. Sliusar, F. Temme, J. Thaele, R. Walte
- …