78 research outputs found

    Warming shows differential effects on late-season growth and competitive capacity of Elodea canadensis and Potamogeton crispus in shallow lakes

    Get PDF
    Submerged macrophytes are likely to be affected by climate changes through changes in water temperatures and length of growing season. We conducted a lab experiment to examine the influence of a late-season temperature increase on growth, biomass allocation, and acclimation of 2 submerged macrophyte species, Elodea canadensis and Potamogeton crispus. We also ran competitive interaction experiments between the 2 species with mono- and mixed-species cultures in pots placed in outdoor heated mesocosms (5 years at ambient temperature and a higher temperature following the IPCC A2 scenario downscaled to local conditions but enhanced by 50%). In the lab, macrophytes collected in the 2 types of mesocosms were grown at ambient temperatures (12 °C in September and 8 °C in October) and 4 °C higher. Warming had an overall stronger effect on E. candensis than P. crispus, particularly within the low temperature range studied. Hence, the relative growth rate (RGR) of E. canadensis acclimated to ambient mesocosm conditions increased 6-fold from low (8 °C) to high (16 °C) temperature whereas the RGR of P. crispus increased <2-fold. In the competitive interaction experiment, warming increased the biomass and RGR of E. canadensis in the monoculture. In addition, warming increased shoot elongation of the plant in both the monoculture and mixed culture. P. crispus was generally unaffected by warming when grown in both monoculture and mixed culture, but competition decreased the elongation of shoots pre-adapted to ambient conditions and grown in the warmer mesocosms. The decomposition rate of E. canadensis accelerated with warming but was unaffected in P. crispus. We conclude that E. canadensis is a stronger competitor than P. crispus under warmer late-season conditions; however, it may have a higher demand for oxygen due to the increased decomposition rates at higher temperatures, particularly in the peripheral growing season, with potential profound effects on lake ecosystems. Although acclimatisation was evident, we suggested that temperature changes will affect the growth pattern of the 2 plant species and thereby perhaps induce a switch in macrophyte species dominance

    Groundwater table fluctuations recorded in zonation of microbial siderites from end-Triassic strata

    Get PDF
    In a terrestrial Triassic–Jurassic boundary succession of southern Sweden, perfectly zoned sphaerosiderites are restricted to a specific sandy interval deposited during the end-Triassic event. Underlying and overlying this sand interval there are several other types of siderite micromorphologies, i.e. poorly zoned sphaerosiderite, spheroidal (ellipsoid) siderite, spherical siderite and rhombohedral siderite. Siderite overgrowths occur mainly as rhombohedral crystals on perfectly zoned sphaerosiderite and as radiating fibrous crystals on spheroidal siderite. Concretionary sparry, microspar and/or micritic siderite cement postdate all of these micromorphologies. The carbon isotope composition of the siderite measured by conventional mass spectrometry shows the characteristic broad span of data, probably as a result of multiple stages of microbial activity. SIMS (secondary ion mass spectrometry) revealed generally higher δ13C values for the concretionary cement than the perfectly zoned sphaerosiderite, spheroidal siderite and their overgrowths, which marks a change in the carbon source during burial. All the various siderite morphologies have almost identical oxygen isotope values reflecting the palaeo-groundwater composition. A pedogenic/freshwater origin is supported by the trace element compositions of varying Fe:Mn ratios and low Mg contents. Fluctuating groundwater is the most likely explanation for uniform repeated siderite zones of varying Fe:Mn ratios reflecting alternating physiochemical conditions and hostility to microbial life/activity. Bacterially mediated siderite precipitation likely incorporated Mn and other metal ions during conditions that are not favourable for the bacteria and continued with Fe-rich siderite precipitation as the physico-chemical conditions changed into optimal conditions again, reflecting the response to groundwater fluctuations

    Effects of increased temperature and nutrient enrichment on the stoichiometry of primary producers and consumers in temperate shallow lakes.

    No full text
    19 páginas, 7 figuras, 6 tablas.1. We studied the effects of increased water temperatures (0–4.5 °C) and nutrient enrichment on the stoichiometric composition of different primary producers (macrophytes, epiphytes, seston and sediment biofilm) and invertebrate consumers in 24 mesocosm ecosystems created to mimic shallow pond environments. The nutrient ratios of primary producers were used as indicative of relative nitrogen (N) or phosphorus (P) limitation. We further used carbon stable isotopic composition (δ13C) of the different primary producers to elucidate differences in the degree of CO2 limitation. 2. Epiphytes were the only primary producer with significantly higher δ13C in the enriched mesocosms. No temperature effects were observed in δ13C composition of any primary producer. Independently of the treatment effects, the four primary producers had different δ13C signatures indicative of differences in CO2 limitation. Seston had signatures indicating negligible or low CO2 limitation, followed by epiphytes and sediment biofilm, with moderate CO2 limitation, while macrophytes showed the strongest CO2 limitation. CO2 together with biomass of epiphytes were the key variables explaining between 50 and 70% of the variability in δ13C of the different primary producers, suggesting that epiphytes play an important role in carbon flow of temperate shallow lakes. 3. The ratio of carbon to chlorophyll a decreased with increasing temperature and enrichment in both epiphytes and seston. The effects of temperature were mainly attributed to changes in algal Chl a content, while the decrease with enrichment was probably a result of a higher proportion of algae in the seston and epiphytes. 4. Macrophytes, epiphytes and seston decreased their C : N with enrichment, probably as an adaptation to the different N availability levels. The C : N of epiphytes and Elodea canadensis decreased with increasing temperature in the control mesocosms. Sediment biofilm was the only primary producer with lower C : P and N : P with enrichment, probably as a result of higher P accumulation in the sediment. 5. Independently of nutrient level and increased temperature effects the four primary producers had significantly different stoichiometric compositions. Macrophytes had higher C : N and C : P and, together with epiphytes, also the highest N : P. Seston had no N or P limitation, while macrophytes and epiphytes may have been P limited in a few mesocosms. Sediment biofilm indicated strong N deficiency. 6. Consumers had strongly homeostatic stoichiometric compositions in comparison to primary producers, with weak or no significant treatment effects in any of the groups (insects, leeches, molluscs and crustaceans). Among consumers, predators had significantly higher N content and lower C : N than grazers.MV was supported by a Marie Curie post-doctoral grant (MEIF-CT-2005-010554), the Danish Natural Science Research Council (2052-01-0034, the research project ‘CONWOY’ on the effects of climate changes on freshwater), the EU EUROLIMPACS project (GOCE-CT-2003-505540) and ‘CLEAR’ (a Villum Kann Rasmussen Centre of Excellence Project).Peer reviewe

    Contrasting roles of water chemistry, lake morphology, land-use, climate and spatial processes in driving phytoplankton richness in the Danish landscape

    No full text
    Understanding of the forces driving the structure of biotic communities has long been an important focus for ecology, with implications for applied and conservation science. To elucidate the factors driving phytoplankton genus richness in the Danish landscape, we analyzed data derived from late-summer samplings in 195 Danish lakes and ponds in a spatially-explicit framework. To account for the uneven sampling of lakes in the monitoring data, we performed 1,000 permutations. A random set of 131 lakes was assembled and a single sample was selected randomly for each lake at each draw and all the analyses were performed on permuted data 1,000 times. The local environment was described by lake water chemistry, lake morphology, land-use in lake catchments, and climate. Analysis of the effects of four groups of environmental factors on the richness of the main groups of phytoplankton revealed contrasting patterns. Lake water chemistry was the strongest predictor of phytoplankton richness for all groups, while lake morphology also had a strong influence on Bacillariophyceae, Cyanobacteria, Dinophyceae, and Euglenophyceae richness. Climate and land-use in catchments contributed only little to the explained variation in phytoplankton richness, although both factors had a significant effect on Bacillariophyceae richness. Notably, total nitrogen played a more important role for phytoplankton richness than total phosphorus. Overall, models accounted for ca. 30% of the variation in genus richness for all phytoplankton combined as well as the main groups separately. Local spatial structure (< 30 km) in phytoplankton richness suggested that connectivity among lakes and catchment-scale processes might also influence phytoplankton richness in Danish lakes

    Factors controlling the stable isotope composition and C:N ratio of seston and periphyton in shallow lake mesocosms with contrasting nutrient loadings and temperatures

    No full text
    Carbon (C) and nitrogen (N) stable isotope composition (15N:14N, δ15N and 13C:12C, δ13C) have been widely used to elucidate changes in aquatic ecosystem dynamics created by eutrophication and climate warming, often, however, without accounting for seasonal variation. Here, we aim to determine the factors controlling the stable isotope composition and C:N ratio of seston and periphyton in shallow lakes with contrasting nutrient loadings and climate; for this purpose, we followed the monthly stable isotope composition (c. 1 year) of seston (SES) and periphyton (PER) in 24 mesocosms mimicking shallow lakes with two nutrient treatments (enriched and unenriched) and three temperature scenarios (ambient, +3 and +5°C). Nutrient enrichment and warming had a stronger impact on the δ15N and δ13C values of seston than on periphyton, and the temporal isotopic variability in both communities was large. δ15NPER did not differ markedly between nutrient treatments, whereas δ15NSES was lower in the enriched mesocosms, possibly reflecting higher N2-fixation by cyanobacteria. δ15NSES was higher in winter in the heated mesocosms and its dynamics was linked with that of NH4-N, whereas δ15NPER showed a stronger association with NO3-N. δ15NSES demonstrated a positive relationship with mean monthly temperature, indicating less isotope fractionation among autotrophs when production increased. δ13CSES was lowest in the enriched mesocosms during winter, whereas δ13CPER did not differ between nutrient treatments. δ13CSES and δ13CPER were positively related to pH, likely reflecting a pH-induced differential access to dissolved carbon species in the primary producers. The positive δ13C-temperature relationship suggested less fractionation of CO2 and HCO3 − and/or larger use of HCO3 − at higher temperatures. The C:N ratios varied seasonally and the differences between the enriched and unenriched mesocosms were stronger for seston than for periphyton. Particularly, the C:NSES ratios did not indicate deficiencies in N as opposed to the C:NPER ratios, supporting the observed changes in δ15N and suggesting that seston and periphyton have access to different sources of nutrients. We did not observe any clear effect of temperature warming on the C:N ratios. Our study provides evidence of strong seasonality in the isotopic composition and C:N ratios of seston and periphyton across nutrient and temperature levels; also, we identified several factors that are likely to modulate the strength and variability in stable isotopes values and stoichiometry of sestonic and periphytic communities under these scenarios.Fil: Trochine, Carolina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigaciones en Biodiversidad y Medioambiente. Universidad Nacional del Comahue. Centro Regional Universidad Bariloche. Instituto de Investigaciones en Biodiversidad y Medioambiente; Argentina. University Aarhus; DinamarcaFil: Guerrieri, Marcelo. University Aarhus; DinamarcaFil: Liboriussen, Lone. University Aarhus; DinamarcaFil: Willems, Priscila. Instituto Nacional de Tecnología Agropecuaria. Centro Regional Patagonia Norte. Estación Experimental Agropecuaria San Carlos de Bariloche; ArgentinaFil: Lauridsen, Torben L.. University Aarhus; Dinamarca. Sino-Danish Education and Research Centre; ChinaFil: Søndergaard, Martín. University Aarhus; Dinamarca. Sino-Danish Education and Research Centre; ChinaFil: Jeppesen, Erik. University Aarhus; Dinamarca. Sino-Danish Education and Research Centre; Chin
    corecore