43 research outputs found

    Molecular excitation in the Interstellar Medium: recent advances in collisional, radiative and chemical processes

    Full text link
    We review the different excitation processes in the interstellar mediumComment: Accepted in Chem. Re

    Cytomegalovirus and immune senescence: culprit or innocent bystander?

    Full text link
    Immune senescence may be defined as the age-related reduction and dysregulation of immune function, and has been associated with increased incidence and severity of infectious diseases and with poor efficacy of prophylactic vaccines in the elderly. Several studies have demonstrated that persistent infections with Herpes viruses in general and Cytomegalovirus (CMV) in particular have a profound influence on subset distribution, phenotype and potentially also on the function of T cells in ageing individuals. The association of CMV-seropositivity and accumulation of CMV-specific CD8+ T cells with decreased survival in longitudinal studies of very elderly has fostered the hypothesis that CMV-infection may be an important causative factor for the development of immune senescence. Here, we have critically summarized the current body of evidence supporting this hypothesis, highlight some controversial issues about its relevance and mechanisms and propose areas of future research to demonstrate unequivocally whether and how persistent infections might compromise the ageing immune system

    Dissociative recombination and vibrational excitation of CO+: model calculations and comparison with experiment

    No full text
    The latest molecular data—potential energy curves and Rydberg/valence interactions—characterizing the super-excited electronic states of CO are reviewed, in order to provide inputs for the study of their fragmentation dynamics. Starting from this input, the main paths and mechanisms for CO+ dissociative recombination are analyzed; its cross sections are computed using a method based on multichannel quantum defect theory. Convoluted cross sections, giving both isotropic and anisotropic Maxwellian rate coefficients, are compared with merged-beam and storage-ring xperimental results. The calculated cross sections underestimate the measured ones by a factor of two, but display a very similar resonant shape. These facts confirm the quality of our approach for the dynamics, and call for more accurate and more extensive molecular structure calculations. Keywords: dissociative recombination, electron impact vibrational excitation, vibrationally excited, multichannel quantum defect theory (Some figures may appear in colour only in the online journal

    Fundamental Physics from Observations of White Dwarf Stars

    No full text
    Variation in fundamental constants provide an important test of theories of grand unification. Potentially, white dwarf spectra allow us to directly observe variation in fundamental constants at locations of high gravitational potential. We study hot, metal polluted white dwarf stars, combining far-UV spectroscopic observations, atomic physics, atmospheric modelling and fundamental physics, in the search for variation in the fine structure constant. This registers as small but measurable shifts in the observed wavelengths of highly ionized Fe and Ni lines when compared to laboratory wavelengths. Measurements of these shifts were performed by Berengut et al (2013) using high-resolution STIS spectra of G191-B2B, demonstrating the validity of the method. We have extended this work by; (a) using new (high precision) laboratory wavelengths, (b) refining the analysis methodology (incorporating robust techniques from previous studies towards quasars), and (c) enlarging the sample of white dwarf spectra. A successful detection would be the first direct measurement of a gravitational field effect on a bare constant of nature. We describe our approach and present preliminary results
    corecore