76 research outputs found

    Quantifying structural damage from self-irradiation in a plutonium superconductor

    Full text link
    The 18.5 K superconductor PuCoGa5 has many unusual properties, including those due to damage induced by self-irradiation. The superconducting transition temperature decreases sharply with time, suggesting a radiation-induced Frenkel defect concentration much larger than predicted by current radiation damage theories. Extended x-ray absorption fine-structure measurements demonstrate that while the local crystal structure in fresh material is well ordered, aged material is disordered much more strongly than expected from simple defects, consistent with strong disorder throughout the damage cascade region. These data highlight the potential impact of local lattice distortions relative to defects on the properties of irradiated materials and underscore the need for more atomic-resolution structural comparisons between radiation damage experiments and theory.Comment: 7 pages, 5 figures, to be published in PR

    Muon spin rotation measurements of the superfluid density in fresh and aged superconducting PuCoGa5_5

    Full text link
    We have measured the temperature dependence and magnitude of the superfluid density ρs(T)\rho_{\rm s}(T) via the magnetic field penetration depth λ(T)\lambda(T) in PuCoGa5_5 (nominal critical temperature Tc0=18.5T_{c0} = 18.5 K) using the muon spin rotation technique in order to investigate the symmetry of the order parameter, and to study the effects of aging on the superconducting properties of a radioactive material. The same single crystals were measured after 25 days (Tc=18.25T_c = 18.25 K) and 400 days (Tc=15.0T_c = 15.0 K) of aging at room temperature. The temperature dependence of the superfluid density is well described in both materials by a model using d-wave gap symmetry. The magnitude of the muon spin relaxation rate σ\sigma in the aged sample, σ1/λ2ρs/m\sigma\propto 1/\lambda^2\propto\rho_s/m^*, where mm^* is the effective mass, is reduced by about 70% compared to fresh sample. This indicates that the scattering from self-irradiation induced defects is not in the limit of the conventional Abrikosov-Gor'kov pair-breaking theory, but rather in the limit of short coherence length (about 2 nm in PuCoGa5_5) superconductivity.Comment: 11 page

    Virtual Compton Scattering and the Generalized Polarizabilities of the Proton at Q\u3csup\u3e2\u3c/sup\u3e = 0.92 and 1.76 GeV\u3csup\u3e2\u3c/sup\u3e

    Get PDF
    Virtual Compton scattering (VCS) on the proton has been studied at the Jefferson Laboratory using the exclusive photon electroproduction reaction ep → epγ. This paper gives a detailed account of the analysis which has led to the determination of the structure functions PLL − PTT/ε and PLT and the electric and magnetic generalized polarizabilities (GPs) αE(Q2)and βM(Q2) at values of the four-momentum transfer squared Q2 = 0.92 and 1.76 GeV2. These data, together with the results of VCS experiments at lower momenta, help building a coherent picture of the electric and magnetic GPs of the proton over the full measured Q2 range and point to their nontrivial behavior

    Virtual Compton Scattering and Neutral Pion Electroproduction in the Resonance Region Up to the Deep Inelastic Region at Backward Angles

    Get PDF
    We have made the first measurements of the virtual Compton scattering (VCS) process via the H(e, e′p)γ exclusive reaction in the nucleon resonance region, at backward angles. Results are presented for the W-dependence at fixed Q2=1 GeV2 and for the Q2 dependence at fixed W near 1.5 GeV. The VCS data show resonant structures in the first and second resonance regions. The observed Q2 dependence is smooth. The measured ratio of H(e, e′p)γ to H(e, e′p)π0 cross sections emphasizes the different sensitivity of these two reactions to the various nucleon resonances. Finally, when compared to real Compton scattering (RCS) at high energy and large angles, our VCS data at the highest W (1.8−1.9 GeV) show a striking Q2 independence, which may suggest a transition to a perturbative scattering mechanism at the quark level

    Virtual Compton Scattering and the Generalized Polarizabilities of the Proton at Q^2=0.92 and 1.76 GeV^2

    Get PDF
    Virtual Compton Scattering (VCS) on the proton has been studied at Jefferson Lab using the exclusive photon electroproduction reaction (e p --> e p gamma). This paper gives a detailed account of the analysis which has led to the determination of the structure functions P_LL-P_TT/epsilon and P_LT, and the electric and magnetic generalized polarizabilities (GPs) alpha_E(Q^2) and beta_M(Q^2) at values of the four-momentum transfer squared Q^2= 0.92 and 1.76 GeV^2. These data, together with the results of VCS experiments at lower momenta, help building a coherent picture of the electric and magnetic GPs of the proton over the full measured Q^2-range, and point to their non-trivial behavior.Comment: version 2: modified according to PRC Editor's and Referee's recommendations. Archival paper for the E93-050 experiment at JLab Hall A. 28 pages, 23 figures, 5 cross-section tables. To be submitted to Phys.Rev.

    Backward electroproduction of pi0 mesons on protons in the region of nucleon resonances at four momentum transfer squared Q**2 = 1.0 GeV**2

    Get PDF
    Exclusive electroproduction of pi0 mesons on protons in the backward hemisphere has been studied at Q**2 = 1.0 GeV**2 by detecting protons in the forward direction in coincidence with scattered electrons from the 4 GeV electron beam in Jefferson Lab's Hall A. The data span the range of the total (gamma* p) center-of-mass energy W from the pion production threshold to W = 2.0 GeV. The differential cross sections sigma_T+epsilon*sigma_L, sigma_TL, and sigma_TT were separated from the azimuthal distribution and are presented together with the MAID and SAID parametrizations.Comment: 17 pages, 11 figures, information can be found at http://hallaweb.jlab.org/experiment/E93-050/vcs.html updated content about SAID analysis updated MAID results following new reference nucl-th/0310041 updated figure

    The reaction dynamics of the 16O(e,e'p) cross section at high missing energies

    Full text link
    We measured the cross section and response functions (R_L, R_T, and R_LT) for the 16O(e,e'p) reaction in quasielastic kinematics for missing energies 25 <= E_miss <= 120 MeV at various missing momenta P_miss <= 340 MeV/c. For 25 < E_miss < 50 MeV and P_miss \approx 60 MeV/c, the reaction is dominated by single-nucleon knockout from the 1s1/2-state. At larger P_miss, the single-particle aspects are increasingly masked by more complicated processes. For E_miss > 60 MeV and P_miss > 200 MeV/c, the cross section is relatively constant. Calculations which include contributions from pion exchange currents, isobar currents and short-range correlations account for the shape and the transversity but only for half of the magnitude of the measured cross section.Comment: 6 pages, 4 figures, submitted to Phys Rev Lett, formatting error fixe

    Second-Order Formalism for 3D Spin-3 Gravity

    Full text link
    A second-order formalism for the theory of 3D spin-3 gravity is considered. Such a formalism is obtained by solving the torsion-free condition for the spin connection \omega^a_{\mu}, and substituting the result into the action integral. In the first-order formalism of the spin-3 gravity defined in terms of SL(3,R) X SL(3,R) Chern-Simons (CS) theory, however, the generalized torsion-free condition cannot be easily solved for the spin connection, because the vielbein e^a_{\mu} itself is not invertible. To circumvent this problem, extra vielbein-like fields e^a_{\mu\nu} are introduced as a functional of e^a_{\mu}. New set of affine-like connections \Gamma_{\mu M}^N are defined in terms of the metric-like fields, and a generalization of the Riemann curvature tensor is also presented. In terms of this generalized Riemann tensor the action integral in the second-order formalism is expressed. The transformation rules of the metric and the spin-3 gauge field under the generalized diffeomorphims are obtained explicitly. As in Einstein gravity, the new affine-like connections are related to the spin connection by a certain gauge transformation, and a gravitational CS term expressed in terms of the new connections is also presented.Comment: 40 pages, no figures. v2:references added, coefficients of eqs in apppendix D corrected, minor typos also corrected, v3:Version accepted for publication in Classical and Quantum Gravit

    Large Momentum Transfer Measurements of the Deuteron Elastic Structure Function A(Q^2) at Jefferson Laboratory

    Full text link
    The deuteron elastic structure function A(Q^2) has been extracted in the Q^2 range 0.7 to 6.0 (GeV/c)^2 from cross section measurements of elastic electron-deuteron scattering in coincidence using the Hall A Facility of Jefferson Laboratory. The data are compared to theoretical models based on the impulse approximation with inclusion of meson-exchange currents, and to predictions of quark dimensional scaling and perturbative quantum chromodynamicsComment: Submitted to Physical Review Letter

    New Measurement of Parity Violation in Elastic Electron-Proton Scattering and Implications for Strange Form Factors

    Full text link
    We have measured the parity-violating electroweak asymmetry in the elastic scattering of polarized electrons from the proton. The result is A = -15.05 +- 0.98(stat) +- 0.56(syst) ppm at the kinematic point theta_lab = 12.3 degrees and Q^2 = 0.477 (GeV/c)^2. The measurement implies that the value for the strange form factor (G_E^s + 0.392 G_M^s) = 0.025 +- 0.020 +- 0.014, where the first error is experimental and the second arises from the uncertainties in electromagnetic form factors. This measurement is the first fixed-target parity violation experiment that used either a `strained' GaAs photocathode to produce highly polarized electrons or a Compton polarimeter to continuously monitor the electron beam polarization.Comment: 8 pages, 4 figures, Tex, elsart.cls; revised version as accepted for Phys. Lett.
    corecore