4,980 research outputs found

    Hydroelastic vibration analysis of partially liquid-filled shells using a series representation of the liquid

    Get PDF
    A series representation of the oscillatory behavior of incompressible nonviscous liquids contained in partially filled elastic tanks is presented. Each term is selected on the basis of hydroelastic vibrations in circular cylindrical tanks. Using a complementary energy principle, the superposition of terms is made to approximately satisfy the liquid-tank interface compatibility. This analysis is applied to the gravity sloshing and hydroelastic vibrations of liquids in hemispherical tanks and in a typical elastic aerospace propellant tank. With only a few series terms retained, the results correlate very well with existing analytical results, NASTRAN-generated analytical results, and experimental test results. Hence, although each term is based on a cylindrical tank geometry, the superposition can be successfully applied to noncylindrical tanks

    An investigation of hydraulic-line resonance and its attenuation

    Get PDF
    An investigation of fluid resonance in high-pressure hydraulic lines has been made with two types of fluid dampers (or filters) installed in the line. One type involved the use of one or more closed-end tubes branching at right angles from a main line, and the other type was a fluid muffler installed in-line. These devices were evaluated in forced vibration tests with oscillatory disturbances over a 1000-Hz range applied to one end of the line and with oscillatory pressures measured at various stations along the main pipe. Limited applications of acoustic-wave theory to the branched systems are also included. Results show varying attenuations of pressure perturbations, depending on the number and location of branches and the type of muffler. Up to three branches were used in the branch-resonator study, and the largest frequency range with maximum attenuation was obtained for a three-branch configuration. The widest frequency ranges with significant attenuations were obtained with two types of fluid mufflers

    Octave Spanning Frequency Comb on a Chip

    Full text link
    Optical frequency combs have revolutionized the field of frequency metrology within the last decade and have become enabling tools for atomic clocks, gas sensing and astrophysical spectrometer calibration. The rapidly increasing number of applications has heightened interest in more compact comb generators. Optical microresonator based comb generators bear promise in this regard. Critical to their future use as 'frequency markers', is however the absolute frequency stabilization of the optical comb spectrum. A powerful technique for this stabilization is self-referencing, which requires a spectrum that spans a full octave, i.e. a factor of two in frequency. In the case of mode locked lasers, overcoming the limited bandwidth has become possible only with the advent of photonic crystal fibres for supercontinuum generation. Here, we report for the first time the generation of an octave-spanning frequency comb directly from a toroidal microresonator on a silicon chip. The comb spectrum covers the wavelength range from 990 nm to 2170 nm and is retrieved from a continuous wave laser interacting with the modes of an ultra high Q microresonator, without relying on external broadening. Full tunability of the generated frequency comb over a bandwidth exceeding an entire free spectral range is demonstrated. This allows positioning of a frequency comb mode to any desired frequency within the comb bandwidth. The ability to derive octave spanning spectra from microresonator comb generators represents a key step towards achieving a radio-frequency to optical link on a chip, which could unify the fields of metrology with micro- and nano-photonics and enable entirely new devices that bring frequency metrology into a chip scale setting for compact applications such as space based optical clocks

    Mode spectrum and temporal soliton formation in optical microresonators

    Full text link
    The formation of temporal dissipative solitons in optical microresonators enables compact, high repetition rate sources of ultra-short pulses as well as low noise, broadband optical frequency combs with smooth spectral envelopes. Here we study the influence of the resonator mode spectrum on temporal soliton formation. Using frequency comb assisted diode laser spectroscopy, the measured mode structure of crystalline MgF2 resonators are correlated with temporal soliton formation. While an overal general anomalous dispersion is required, it is found that higher order dispersion can be tolerated as long as it does not dominate the resonator's mode structure. Mode coupling induced avoided crossings in the resonator mode spectrum are found to prevent soliton formation, when affecting resonator modes close to the pump laser. The experimental observations are in excellent agreement with numerical simulations based on the nonlinear coupled mode equations, which reveal the rich interplay of mode crossings and soliton formation

    A para-differential renormalization technique for nonlinear dispersive equations

    Full text link
    For \alpha \in (1,2) we prove that the initial-value problem \partial_t u+D^\alpha\partial_x u+\partial_x(u^2/2)=0 on \mathbb{R}_x\times\mathbb{R}_t; u(0)=\phi, is globally well-posed in the space of real-valued L^2-functions. We use a frequency dependent renormalization method to control the strong low-high frequency interactions.Comment: 42 pages, no figure

    Spacecraft environments interactions: Protecting against the effects of spacecraft charging

    Get PDF
    The effects of the natural space environments on spacecraft design, development, and operation are the topic of a series of NASA Reference Publications currently being developed by the Electromagnetics and Environments Branch, Systems Analysis and Integration Laboratory, Marshall Space Flight Center. This primer, second in the series, describes the interactions between a spacecraft and the natural space plasma. Under certain environmental/spacecraft conditions, these interactions result in the phenomenon known as spacecraft charging. It is the focus of this publication to describe the phenomenon of spacecraft charging and its possible adverse effects on spacecraft and to present the key elements of a Spacecraft Charging Effects Protection Plan

    Temporal solitons in optical microresonators

    Full text link
    Dissipative solitons can emerge in a wide variety of dissipative nonlinear systems throughout the fields of optics, medicine or biology. Dissipative solitons can also exist in Kerr-nonlinear optical resonators and rely on the double balance between parametric gain and resonator loss on the one hand and nonlinearity and diffraction or dispersion on the other hand. Mathematically these solitons are solution to the Lugiato-Lefever equation and exist on top of a continuous wave (cw) background. Here we report the observation of temporal dissipative solitons in a high-Q optical microresonator. The solitons are spontaneously generated when the pump laser is tuned through the effective zero detuning point of a high-Q resonance, leading to an effective red-detuned pumping. Red-detuned pumping marks a fundamentally new operating regime in nonlinear microresonators. While usually unstablethis regime acquires unique stability in the presence of solitons without any active feedback on the system. The number of solitons in the resonator can be controlled via the pump laser detuning and transitions to and between soliton states are associated with discontinuous steps in the resonator transmission. Beyond enabling to study soliton physics such as soliton crystals our observations open the route towards compact, high repetition-rate femto-second sources, where the operating wavelength is not bound to the availability of broadband laser gain media. The single soliton states correspond in the frequency domain to low-noise optical frequency combs with smooth spectral envelopes, critical to applications in broadband spectroscopy, telecommunications, astronomy and low phase-noise microwave generation.Comment: Includes Supplementary Informatio

    Photonic chip based optical frequency comb using soliton induced Cherenkov radiation

    Full text link
    By continuous wave pumping of a dispersion engineered, planar silicon nitride microresonator, continuously circulating, sub-30fs short temporal dissipative solitons are generated, that correspond to pulses of 6 optical cycles and constitute a coherent optical frequency comb in the spectral domain. Emission of soliton induced Cherenkov radiation caused by higher order dispersion broadens the spectral bandwidth to 2/3 of an octave, sufficient for self referencing, in excellent agreement with recent theoretical predictions and the broadest coherent microresonator frequency comb generated to date. In a further step, this frequency comb is fully phase stabilized. The ability to preserve coherence over a broad spectral bandwidth using soliton induced Cherenkov radiation marks a critical milestone in the development of planar optical frequency combs, enabling on one hand application in e.g. coherent communications, broadband dual comb spectroscopy and Raman spectral imaging, while on the other hand significantly relaxing dispersion requirements for broadband microresonator frequency combs and providing a path for their generation in the visible and UV. Our results underscore the utility and effectiveness of planar microresonator frequency comb technology, that offers the potential to make frequency metrology accessible beyond specialized laboratories.Comment: Changes: - Added data (new Fig.4) on the first full phase stabilization of a dissipative Kerr soliton (or dissipative cavity soliton) in a microresonator - Extended Fig. 8 in the SI - Introduced nomenclature of dissipative Kerr solitons - Minor other change

    E2F Activation of S Phase Promoters via Association with HCF-1 and the MLL Family of Histone H3K4 Methyltransferases

    Get PDF
    E2F transcriptional regulators control human-cell proliferation by repressing and activating the transcription of genes required for cell-cycle progression, particularly the S phase. E2F proteins repress transcription in association with retinoblastoma pocket proteins, but less is known about how they activate transcription. Here, we show that the human G1 phase regulator HCF-1 associates with both activator (E2F1 and E2F3a) and repressor (E2F4) E2F proteins, properties that are conserved in insect cells. Human HCF-1-E2F interactions are versatile: their associations and binding to E2F-responsive promoters are cell-cycle selective, and HCF-1 displays coactivator properties when bound to the E2F1 activator and corepressor properties when bound to the E2F4 repressor. During the G1-to-S phase transition, HCF-1 recruits the mixed-lineage leukemia (MLL) and Set-1 histone H3 lysine 4 methyltransferases to E2F-responsive promoters and induces histone methylation and transcriptional activation. These results suggest that HCF-1 induces cell-cycle-specific transcriptional activation by E2F proteins to promote cell proliferation
    corecore