28,256 research outputs found

    Squeeze-film dampers for turbomachinery stabilization

    Get PDF
    A technique for investigating the stability and damping present in centrally preloaded radially symmetric multi-mass flexible rotor bearing systems is presented. In general, one needs to find the eigenvalues of the linearized perturbation equations, though zero frequency stability maps may be found by solving as many simultaneous non-linear equations as there are dampers; and in the case of a single damper, such maps may be found directly, regardless of the number of degrees of freedom. The technique is illustrated for a simple symmetric four degree of freedom flexible rotor with an unpressurized damper. This example shows that whereas zero frequency stability maps are likely to prove to be a simple way to delineate multiple solution possibilities, they do not provide full stability information. Further, particularly for low bearing parameters, the introduction of an unpressurized squeeze film damper may promote instability in an otherwise stable system

    Design, development and delivery of one /1/ breadboard and three /3/ production units of a 75 VA integrated static inverter Monthly report no. 15

    Get PDF
    Flip-flop arrays, power transistors, epitaxial stress, and other technological developments in integrated static inverter progra

    Extending Hybrid CSP with Probability and Stochasticity

    Full text link
    Probabilistic and stochastic behavior are omnipresent in computer controlled systems, in particular, so-called safety-critical hybrid systems, because of fundamental properties of nature, uncertain environments, or simplifications to overcome complexity. Tightly intertwining discrete, continuous and stochastic dynamics complicates modelling, analysis and verification of stochastic hybrid systems (SHSs). In the literature, this issue has been extensively investigated, but unfortunately it still remains challenging as no promising general solutions are available yet. In this paper, we give our effort by proposing a general compositional approach for modelling and verification of SHSs. First, we extend Hybrid CSP (HCSP), a very expressive and process algebra-like formal modeling language for hybrid systems, by introducing probability and stochasticity to model SHSs, which is called stochastic HCSP (SHCSP). To this end, ordinary differential equations (ODEs) are generalized by stochastic differential equations (SDEs) and non-deterministic choice is replaced by probabilistic choice. Then, we extend Hybrid Hoare Logic (HHL) to specify and reason about SHCSP processes. We demonstrate our approach by an example from real-world.Comment: The conference version of this paper is accepted by SETTA 201

    A two-stage ceramic tile grout sealing process using a high power diode laser Part I: Grout development and materials characteristics

    Get PDF
    Work has been conducted using a 60 W-cw high power diode laser (HPDL) in order to determine the feasibility and characteristics of sealing the void between adjoining ceramic tiles with a specially developed grout material having an impermeable enamel surface glaze. A two-stage process has been developed using a new grout material which consists of two distinct components: an amalgamated compound substrate and a glazed enamel surface; the amalgamated compound seal providing a tough, heat resistant bulk substrate, whilst the enamel provides an impervious surface. HPDL processing has resulted in crack free seals produced in normal atmospheric conditions. The basic process phenomena are investigated and the laser effects in terms of seal morphology, composition and microstructure are presented. Also, the resultant heat affects are analysed and described, as well as the effects of the shield gases, O2 and Ar, during laser processing. Tiles were successfully sealed with power densities as low as 500 W/cm2 and at rates up to 600 mm/min. Contact angle measurements revealed that due to the wettability characteristics of the amalgamated oxide compound grout (AOCG), laser surface treatment was necessary in order to alter the surface from a polycrystalline to a semi-amorphous structure, thus allowing the enamel to adhere. Bonding of the enamel to the AOCG and the ceramic tiles was identified as being principally due to van der Waals forces, and on a very small scale, some of the base AOCG material dissolving into the glaze

    Determination of Strong-Interaction Widths and Shifts of Pionic X-Rays with a Crystal Spectrometer

    Get PDF
    Pionic 3d-2p atomic transitions in F, Na, and Mg have been studied using a bent crystal spectrometer. The pionic atoms were formed in the production target placed in the external proton beam of the Space Radiation Effects Laboratory synchrocyclotron. The observed energies and widths of the transitions are E=41679(3) eV and Γ=21(8) eV, E=62434(18) eV and Γ=22(80) eV, E=74389(9) eV and Γ=67(35) eV, in F, Na, and Mg, respectively. The results are compared with calculations based on a pion-nucleus optical potential

    Assessing the Impact of Technology Assessment, Responsible Research and Innovation and Sustainability Research: Towards a Common Methodological Approach

    Get PDF
    The missions of Technology Assessment (TA), Responsible Research and Innovation (RRI) and Sustainability Research (SR) are similar in their relationship to Science, Technology and Innovation (STI). Although adopting different terminology, the three research fields show great conceptual and methodological overlaps, as all three react to societal demands and policy needs via common tools. The impact of TA, RRI and SR is linked directly, but its assessment requires new thinking in terms of common conceptual and methodological approaches. The paper provides an overview of the current discussion on societal impact assessment and identifies areas of particular interest for the three fields. It describes the current discussions on impact assessment and impact indicators in each field and undertakes a bibliometric analysis that shows clear inter-relationships in terms of thematic focus and a common emphasis on impact in all three fields. Following this analysis, the paper argues for a common impact assessment methodology for TA, RRI and SR, under the notion of resonance and based on the concepts of anticipation, reflection and inclusion

    Livestock production system management responses to thermal challenges

    Get PDF
    The adaptive capabilities of animals and livestock production systems have been emphasized in this report. Biometeorology has a key role in rational management to meet the challenges of thermal environments. While the focus is primarily on cattle in warm or hot climates, the importance of dynamic animal responses to environmental challenges applies to all species and climates. Methods used to mitigate environmental challenges focus on heat loss/heat production balance. Under cold stress, reduction of heat loss is the key. Under heat stress, reduction of heat load or increasing heat loss are the primary management tools, although heat-tolerant animals are also available. In general, livestock with health problems and the most productive animals (e.g., highest growth rate or milk production) are at greatest risk of heat stress, thereby requiring the most attention. Risk management, by considering perceived thermal challenges, then assessing the potential consequences and acting accordingly, will reduce the impact of such challenges. Appropriate actions include: shade, sprinkling, air movement, or active cooling. Summarizing, the most important element of proactive environmental management to reduce risk is preparation: be informed, develop a strategic plan, observe and recognize animals in distress, and take appropriate tactical action
    • …
    corecore