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SQUEEZE-FIIM DAMPERS FOR TURBOMACHINERY STABILIZATION

L. J. McLean and E. J. Hahn

University of New South Wales
Kensington, N.S.W., 2033, Australia

This paper presents a technique for investigating the stability and damping
present in centrally preloaded radially symmetric multi-mass flexible rotor bearing
systems. In general, one needs to find the eigenvalues of the linearized pertur-
bation equations, though zero frequency stability maps may be found by solving as
many simultaneous non-linear equations as there are dampers; and in the case of a
single damper, such maps may be found directly, regardless of the number of degrees
of freedom. The technique is illustrated for a simple symmetric four degree of
freedom flexible rotor with an unpressurized damper. This example shows that whereas
zero frequency stability maps are likely to prove to be a simple way to delineate
multiple solution possibilities, they do not provide full stability information.
Further, particularly for low bearing parameters, the introduction of an unpressur-=
ized squeeze film damper may promote instability in an otherwise stable system.

INTRODUCTION

The use of centrally preloaded squeeze film dampers for the attenuation of the
unbalance response in turbomachinery has been well documented, and solution tech-
niques which enable all equilibrium operation possibilities to be conveniently por-
trayed for general multi-degree of freedom rotor bearing systems are increasingly
available (refs. 1, 2). However, the question as to which of these equilibrium
solutions is stable has not been as fully addressed. Indeed, earlier stability
investigations for simpler squeeze film damped flexible rotors (ref. 3) showed that
instability (in the linear sense) was indeed possible with unpressurized dampers
below and above the first pin pin critical speed, though no instability was noted for
pressurized dampers with retainer springs. The utility of squeeze film dampers to
accommodate the influence of gyroscopic effects, non-rigid bearing mounts and super-
critical operation on stability needs to be better quantified. Hence, it is the
purpose of this paper to present a straightforward but general technique for investi-
gating the stability and degree of damping present in general multi-mass flexible
rotor bearing systems incorporating one or more centrally preloaded squeeze film
dampers. The technique will be illustrated for a simple symmetric four degree of
freedom flexible rotor.

SYMBOLS
A,B square matrices defined by c =T lcT*
equations (27) and (28) C* matrix defined by equation (18)
dial cl £
c ra 1? cfeafance o da?per c, - cll[(ml-FmQ)w]
matrix or viscous gamplng and 2¢, viscous damping of disc in
gyroscopic coefficients figure 3
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C.g, etc.

ei

K
K*

K
1,2
Kyg, etc.

B

2m,

= Qra,/[(m; +m,)w], ete.

eccentricity of ith damper;
i=l,...,m

unbalance excitation forces
defined by equation (31)

Vectors of system excitation
and hydrodynamic forces in
stationary and rotating frames
respectively

vectors of perturbated system
excitation and hydrodynamic
forces in stationary and
rotating frames respectively

elements of Fg and Fgp
respectively; idi=1,...,n

subscript (omitted where
meaning is clear)

subscript or v-1 depending on
context

system stiffness matrix

matrix defined by equation (19)
= k; ,/[(m, +m,)w?]

= PR34/[(m1-Fm2)w2], etc.

rotor stiffness in figure 3

retainer spring stiffness in
figure 3

damper length
system mass matrix
T~ IMT#

= ml’zl[m1-+m2]

number of hydrodynamic damper
stations or some character-
istic system mass

matrix defined by equation
(All)

matrix defined by equation
(A12)

lumped mass of disc in figure 3

lumped mass at bearing stations
in figure 3

number of system degrees of
freedom (necessarily even)

Pg, Pg

P813° Ry

QS’ QR

Qsij’QRij

T

T*

t

u

XYZ, xyZ
X x

§°, %o
8X, Ox
Xis x4
x;, etc.
Yi
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matrix of damper stiffness
coefficients in stationary and
rotating frames respectively

elements of Pg and Py defined
by .equations (7) and (20)
respectively

matrix of damper damping coef-
ficients in stationary and
rotating frames respectively

elements of Q. and QR defined
by equations %8) and (21)
respectively

radius of damper journal

subscripts denoting stationary
(XY¥Z) and rotating (xyZ)
frames respectively

subscripts denoting damper
degrees of freedom x,; and x,
respectively

transformation matrix defined
by equation (11)

matrix defined by equations
(A4) to (A6) -

real time

unbalance parameter
= p,m, /[ (m; +m,)C]

state vector defined by
equation (26)

stationary and rotating
cartesian reference frames
respectively

system displacement wvector in
stationary and rotating frames
respectively

system steady state displace~
ment vector in stationary and
rotating frames respectively

perturbed system displacement
vector in the stationary and
rotating frames respectively

elements of X or x
= x,/C, etc.

phase difference between ith
lumped mass and the stationary
frame as defined in figure 2



damper eccentricity ratio = e/C system as defined by equation

damping ratio at rotor mid-span (22)
in figure 3 = ¢,/(2m,w.) 1 Phase difference between
rotating and stationary frames

n eigenvector of the perturbed
system as defined by equation as defined in figure 2
(29) Q natural frequency at stability
A transformation matrix as threshold
defined by equation (12) w rotor speed
A* matrix defined by equation (A5) w, a characteristic system
system eigenvalue frequency = vk, /m; in figure 3
: wp a bearing parameter
H lubricant viscosity = IRL /[(ml-sz)C 1 in figure 3
P disc mass eccentricity in Y ey ere—
! figure 3 A Wy = vk, /(m; +m,)
. non-dimensional time = Wt . denotes differentiation with
respect to time t
¢ :zgézfg::gezﬁ ?ieirzxzand Ox ! denotes differentiation with
& respect to time T
X eigenvector of the perturbed '
THEORY

Figure 1 depicts a general n degree of freedom rotor bearing system incorpor-
ating one or more squeeze film dampers. For the system, the equations of motion, in
fixed cartesian co-ordinates, may be written as:

MX +CX +KX = Fg(x,%) - ey
Assuming (i) axially symmetric rotor and foundation stiffnesses, (ii) viscous
damping, (iii) central preloading of the hydrodynamic dampers, (iv) synchronous

unbalance excitation, (v) negligible torsional and axial vibration, one can obtain
circular synchronous solutions X, to equation (1) as explained in reference 2, i.e.

ME, + CX; + KX, = F5(Xo.X;) - )

Note that X, is a function of time. It is the degree of stability of these steady
state solutions X, that is of interest.

If the steady state solution X, is perturbed by 8X to X, whereupon FS(Xo Xo)
changes to FS(X X), i.e. if:

INV

= X, + 0%, 3

then substitution of equation (3) in equation (1) and utilizing equation (2) yields:

MK + €8X + KSX = OFg , (4)
where 0Eg = Es(g:g) = Es(go’go) (3)
= PgX +'Q863 + higher order terms , (6)
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FPigure 1 Typical multimass flexible rotor running in damped flexible supports
BFSi'
and where Psij = Eig_ s N
BFSi
and o= == . 8
QSlJ ok, (8)

Thus, neglecting higher order terms, equation (4) may also be written as:

MSX + (€-Qg)SK + (R-Pg)6X = O . (9)

The existence of the partial derivatives is assumed and they are evaluated at §o’go'

Unfortunately, the elements of Qg and Pg, involving derivatives of damper
forces, are in general time dependent, so that equations (9) do not reduce to an
eigenvalue problem. To overcome this difficulty, one may choose a rotating cartesian
reference frame (x,y,Z) wherein the cartesian axis pair (x,y) rotates with angular
velocity w about the Z axis as shown in figure 1. If x be the vector of displace-
ments in the rotating frame, then:

X = Tx, (10)



Figure 2 Location of damper mass m; in fixed and rotating reference frames

where for an n degree of freedom system (n even), the transformation matrix T is
given by:

0
]

T = |1 A ||, (1)
1
A

with equal 2x2 diagonal submatrices A, where:

cos ¢ -sin¢
A = ’ (12)
sin ¢ cos ¢
and ¢ = wt+ P . (13)

Note that P, the angular displacement of the xy axes from the XY axis at time t=0 is

arbitrary. Premultiplying equation (1) by T-! gives forces in the rotating frame,
i.e.:

T'MEK +CX +KX) = T 'Fg = Fp . (14)

Hence, as shown in the Appendix, substitution of equation (10) into equation
(14) yields:

Mi + (C + 2M)% + (-0’M +w€ +K)x = Fp . (15)
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If x, be the steady state solutions of equation (15), then following the same
arguments as above for the stationary frame, the equations of motion consequent upon

system perturbation §x, become:

MOE + (C + 20M - Qp)0%k + (-wM +w€ +K - PR)Sx = 0, (16)
or M3k + C*8% + K*6x = 0, (17
where C* = C + M - Q% > (18)
K* = K +uC - w’M - Pg , (19)
oFR.
_ i
PRij N an ’ (20)
BFRi
Again, the PRij and the QRij are assumed to exist and are evaluated at X,- (Note

that x,=0.)

In general, the steady state damper eccentricities e; will have constant phase
angles (y; -y) with respect to the x axis, as shown in figure 2. Hence, the elements
of Pp and Qi will be functions of ej and (y; -{), where Y is arbitrary. By selecting
¥ equal to one of the v;'s (say y,), Pg and Qg will, in the general case of m
dampers, be funcitions of (2m - 1) quantities €15€p50005€n5 YooY Y YooYy Yye

Note that the coefficients of 6%, 6% and 0x in equation (17) are constants,
i.e. independent of time, so one is immediately in a position to investigate the
stability and the damping pertaining to the equilibrium solutions x, by examining the
solutions of equation (17), a set of n homogeneous second order linear differential
equations with constant coefficients. Thus, by assuming solutions of the form:

(22)

where the X and A may be complex, non-trivial solutions of equation (17) exist, if,
and only if:

det[\®M + XC* +K*] = 0 . (23)

Equation (23), the characteristic equation of the perturbed system, is a poly-
nomial of degree 2n in A. The stability of, and the damping pertaining to the
equilibrium solutions x, depend on the real parts of the roots of equation (23) with
the stability threshold being determined by that combination of system parameters
which result in any pair of roots, A, , =%jQ, where Q is the natural frequency at the
stability threshold. Note that one slch possible stability threshold corresponding
to =0 (i.e. A1,2==ij0) will occur whenever:

det[K*] = 0 . (24)

If stability threshold determinations were the sole requirement, one could
dispense with the need to find the roots A,,...,A,, and apply a linear systems theory
technique, e.g. Routh's Criterion, to the coefficients of equation (23). Such was
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the procedure adopted in reference 3. If the degree of damping is of interest, one
needs to resort in general to some numerical procedure for finding the roots.

An alternative and numerically far more simply approach, in so far as program-
ming effort is concerned, is to utilize generally available eigenvalue solution
procedures, by recasting equations (17) into a recognizable eigenvalue problem. The
normal procedure is to transform these n second order differential equations into the
2n first order equations (see for example reference 4):

Ai +Bu = 0, (25)
" 62._{
where u = i (26)
| 6x
"o 1]
A = s (27)
M 0
and B = . (28)
By assuming solutions of the form:
u = nett, (29)
where the and A may be complex, non~trivial solutions of equation (23) exist if,

n
and only if:
det[AMA +B] = O . (30

Equation (30) is a polynomial of degree 2n in A. It is equivalent to the
characteristic equation (23). The 2n values of A, the roots of the characteristic
equation, are in this formulation more commonly referred to as eigenvalues. Once the
2n eigenvalues have been located for a given choice of system parameters, both the
stability and the degree of damping present can be quantified.

SYSTEM WITH ONE DAMPER

So far the problem formulation has been quite general. If one restricts
attention to a single damper, an important simplification occurs if y is set equal to
Y,» whereupon the elements of PR and Qp in equations (16) are functions of e; omly.
Thus, the need to evaluate Y, is avoided, thereby simplifying stability evaluation
and design data portrayal.

For design study purposes, it is convenient to non-dimensionalize equations
(16) by dividing the force equations by mCw? and the moment equations by mC’w? and
introducing the non-dimensional time T=wt. The above theory is otherwise unchanged,
except all quantities are now non-dimensional, In particular, one can utilize
equation (24) immediately to find those stability thresholds which pertain to zero
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natural frequency. Note that the non-zero elements of Py are located in a 2X2 sub-
matrix, the elements of which are products of wp,/w and functions of €, where W, is a
bearing parameter involving the bearing dimensions and lubricant viscosity. Thus,
whereas equation (24) is a non-linear equation in €, and for a given Ww,, could be
solved iteratively by-some appropriate technique such as the search procedure, one
may note that for some assumed € but unspecified wp, this equation is a quartic in wyp
when the damper is flexibly supported, and a quadratic in wp when the damper is
rigidly supported. Hence one can determine directly from equation (24) the physical-
ly meaningful values of wp (if any) which satisfy it. A repetition of this for other
values of w would enable the stability thresholds corresponding to zero natural
frequency and various values of € to be drawn on a design map with wy as ordinate and
W as abscissa.

Note that such a map is possible regardless of the number of degrees of free-
dom, or of the unbalance distribution. If drawn to the same scale, it can be direct-
ly superimposed on the corresponding equilibrium orbit eccentricity design maps in
reference 2, thereby indicating at a glance, the likelihood of operation in the
vicinity of, or within, this particular type of umnstable region. Note that the
absence of other stability thresholds (at some non-zero natural frequency) has not
been proven, and to be sure that all stability regions have been located, one would
" need to apply a more general technique, e.g. Routh's Criterion, to equation (23) over
the range of 0<e<1, for the range of values of wp and W of interest, a rather
daunting task even for systems with only four degrees of freedom.

ILLUSTRATIVE EXAMPLE

The utility of the above approach will be illustrated for the single disc
symmetric flexible wotor, previously investigated for stability in reference 3 and
for which equilibrium solutions are available in reference 2.

Figure 3 is a diagram of this system with node 1 being taken at the central
disc of mass Zm;, and nodes 2 and 3 at the ends of the rotor which are supported by
identical squeeze film dampers. The lumped mass at the bearing ends is m,, the
retainer spring for central preloading has stiffness k, and the rotor stiffress
between the central and either end node is k,;. All unbalance is assumed to be at the
‘disc, resulting in a disc mass eccentricity p,. Viscous damping at the disc is 2¢,.
Since the rotor is symmetric about the disc, it will suffice to consider one half of

the system only. The equations of motion, appropriately ordered, for this system at
a rotor speed w are given by:

mlil + clil + kl (Xl - XZ) = plmlwzcos(wt) = Fl )
mX, +¢,%, + k,(X, - X,) = pmuw’sin(ut) = F,
: ? (3D)
mX, + k, (X, - X;) +k,X; = F,
mX, +k, X, - X)) + k)X, = F, J

The equations of motion for the perturbed system are given by equatlons (16),
which, in nondimensional form, upon d1v1d1ng each equation by (ml-FmQ)Cw and letting
T =Wt, become:
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Figure 3 Flexible, symmetric unbalanced rotor supported on identical
squeeze film dampers and retainer springs

[ M, 0 0 O ] x\ [ c, -2M, 0 0 x]
M, O x} Ll MG 0 0 X2
0 N " 0 ~W,Cpp /W0 =y, Cpeg /00— 2M, T
-~ . -
i 0 0 M ||| | O 0 —ty, Cgp /UH2M, ~wy, Cgg /0 IR
K,-M, -C, -K, 0 X,
C K,~M 0 -K X
+ 1 1 1 ‘ 1 -2 = 0 , (32)
-K; 0 K+, =My -0pKpp /0 ~WpKyg/w r -
i 0 ! ~WpKgr /0 R +Rp =My ~wpKgg /0 5 |

!

where, to simplify the notation, the damper degrees of freedom x, and x, are denoted

by r and s respectively.

The coefficients Kyp, Cyp, ..., etc. are available in

analytical form for unpressurized and fully pressurized (7 and 27 film) dampers for
both the short (Ocvirk) and finite width (Warner) bearing .approximations (ref..5).
Thus, for the unpressurized or fully pressurized bearings respectively, and using the
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short bearing approximation, one has:

4e(1 + €2
Kpp = - ‘?%‘2*577%' or 0 , (33)
T i
Krg = -Cgs = 2(1 - e2)3/2 %% T -¢e2)3/z > (34)
-m(1 + 2e2?) -(1l - 2e2)
Ksr = Crr =31 - e2)57z °F (1 -eD)5/z ° (35)
~2€
and K’SS = Crs = Csr = (1 - 62)2 or 0 . (36)

The equation obtained by setting the determinant of K* in equation (32) equal
to zero 1s a quadratic in W, and may be solved for given values of € and w.

To present the data in terms of non-dimensional quantities, it is convenient
to plot a non-dimensional bearing parameter w/w. against the non-dimensional rotor
speed w/W., where W, is some characteristic natural frequency of the system, say, the
highest undamped natural frequency of the system which will fall below the desired
operating speed. Equation (24) was then solved for wp/w, over a range of w/w. and €
to obtain the zero natural frequency stability threshold maps if figure 4, using the
following values of the non-dimensional system parameters:

M, = 0.25 ,

M, = l-M, = 0.75 ,

K, = (1 -M)/(ww)? = 0.75w/w)?® >
Ky, = (we/wy)?/(w/wg)? = 0.25(w/we)? >
C; = 2z(1 - Mp)/(w/we) = 0.0075/(w/wy) -

The quantities w,, W, and § are defined in the notation. (Using the
notation in reference 3, the above choice of parameters would correspond to a=0.25,
£=0.5, £=0.0005, a=w/w, and B=wp/w..) Here, w. is the first pin-pin critical
speed of the rotor.

Note that provided the same scales are used for the axes wb/wc and w/w,, one
can overlay this stability threshold map not only over the equilibrium eccentricity
orbit map given in figure 3 in reference 2 which is for an unbalance parameter U=0.3,
but also over any such map for the system, regardless of the unbalance distribution.
These zero frequency stability thresholds were compared to the stability thresholds
for wp/we.=0.1, 0.3, 0.6 and 1.0 in figure 8 of reference 3, which were determined
using Routh's Criterion. No stability thresholds were found for £<0.61, For w/w, <1
there is agreement. However, for w/we >1, the predicted regions of instability in
figure 8 of reference 3 exceed those of figure 4. Thus, figure 4 does not provide
full stability threshold information; and for this, one would need to resort to an
approach such as Routh's Criterion.

As an alternative or in addition to seeking stability thresholds, and to
determine the degree of damping pertaining to the equilibrium solutions, one can find
the eigenvalues A; for the system in figure 3 by forming equation (25) and using an

400



1x100 - | i | 1. 11114 | 1 | I I |
. M,=0.25 F
. w,/w,=05f
_ 03 € 0.62 ;
E [REF. FIG.51 E 0-62
S} i 0.7 i
3 0.7
3 1x1071 4 -
c - 0.8 C
o 10.06 -
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%
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10-006 -
_|{REF. FIG.5] L
2x1073 T T T TT7T71 T T T T T 1T
01 10 100

ROTOR SPEED w/w, (DIM)

Figure 4 Zero natural frequency stability map for the system in figure 3

eigenvalue solver to determine the 33 (i =1, 2, ..., 8). This was done for the
particular equilibrium solutions indicated on figure 5 (corresponding to figure 4 in
reference 2). If any of the Ay have non-negative real parts, the solution is
regarded as unstable, Where all the Aj have negative real parts the solution is
stable., Of particular interest is the degree of relative damping present in such
stable solutions, particularly in the low orbit eccentricity solution when multiple
solutions are possible, as this gives a qualitative indication of the likelihood of
Jumping to the undesirable and possibly unstable high orbit solution upon some system
perturbation, Various means of determining this relative damping are available (ref.4)
such as the smallest logarithmic decrement, -2mRe(})/|Im(A)|, or the smallest damping
ratio, -Re(\)/|A|. Either of these quantities requiresthe determination of the Aj.
The latter quantity i1s indicated for illustrative purposes in figure 5. For example,
at w/we =0.3, the damping ratios corresponding to Wp/We =0.006, 0.06 and 0.3 are
0.0053, 0.047 and 0,23 respectively. The equilibrium solution for wp/we =0.3 could
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Figure 5 Damping ratios at selected points on the rotor response curves for
various values of bearing parameter for the system in figure 3

be regarded as having a high degree of relative damping whereas that for wp/we =0.006
could be regarded as having a low degree of relative damping.

Wherever multiple solution possibilities exist, all intermediate solutions
were unstable. In all such cases, the oscillation frequency was zero, and the
instability was predicted by the stability map of figure 4. However, unstable
single solutions are also indicated, as well as unstable higher eccentricity
solutions in case of multiple solutions. 1In such cases the introduction of the
damper has worsened system behaviour. Such unexpected unstable solutions occurred
for wp/we. equal to 0,006 and 0,06 but not for 0.3. In all such cases, the
oscillation frequency was always non-zero and was not predicted by the zero frequency
stability map of figure 4.
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This provides additional proof that figure 4 does not provide full stability
threshold information. The number of equilibrium solutions investigated for
instability proved insufficient to yield definitive trends in the wvariation of
relative damping as one progresses along any particular frequency response curve in
figure 5. To pick up such trends, a more thorough investigation of the Ay would
need to be undertaken. This is not warranted, for the purpose of this example was
not to investigate in detail the particular system of figure 3, but rather to
illustrate how simply the technique developed in the paper may be put to practical
use,

Note that although figure 4 does not represent global stability thresholds,
it does predict the instability of all the "intermediate" solutions and so, it
serves as a locator of jump speeds, i.e. speeds at which there is a transition from
a speed for which there is only one solution to one where there are at most two
stable solutions or vice versa. Since the high orbit eccentricity solution, if
stable, is still undesirable, generally resulting in unbalance force magnification,
operation in the vicinity of such jump speed regions should be avoided. Though only
proven for the model in figure 3, this equivalence between the zero frequency
stability map and jump speed location is expected to be valid for general multi-
degree of freedom systems, If so, a relatively simple way has been found for
delineating multistable operation possibilities for any system with one damper.

CONCLUSIONS

1. A technique is developed for investigating the stability of and the
degree of damping in the circular synchronous orbit solutions of n
degree of freedom rotor bearing systems. In general, the technique
requires finding the 2n eigenvalues of the linearized perturbation
equations.

2, The perturbation equations of motion are not a function of the
unbalance distribution, so for a given system a single global
stability map suffices for all unbalance distributions of interest,

3. Zero-frequency stability thresholds may be found by solving as many
simultaneous non-linear equations as there are dampers. If the system
contains one damper only, all such stability thresholds may be found
directly by solving at most a quartic equation.

4, Zero-frequency stability maps do not provide full stability
information, but for the four degree of freedom system investigated
in the illustrative example, and probably for more general higher
degree of freedom systems as well, such maps provide a simple way to
delineate multiple solution possibilities.

5. Depending on the system parameters, single equilibrium and, where
multiple equilibrium solution possibilities exist, the high orbit
eccentricity solution may also be unstable, with the likelihood of
instability apparently increasing as the bearing parameter is reduced.
Thus, the introduction of an unpressurized squeeze film damper may
promote instability in an otherwise stable system.
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APPENDIX
Since
}_{ = T}_{ . (Al)
X =Tx +Tx , (2)
X =Tx + 2Tx + Tx , (43)
A#* - o
N
where T=w | A% | , (a4)
i Nl
0 ——— A*
-sin ¢ -cos¢
and A* = . (A5)
cos¢ -gin¢
it follows that T = wr* (A6)
and T = -0?T (A7)

Hence, substitutilon of equation (10) into equation (14) gives:
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T-'MFx + (UF-MI* +T-CT)x + (WI™CT* +T~'KT -w’T-'MD)x = Fp (a8)

AL - 0
1N i
where T-! = i AL E , (A9)
i RN
R A
[ cos¢ sing
and At = . (A10)
| -sin ¢ cos¢

To evaluate T‘IMI, it is convenient to partition it into 2X2 submatrices.
Any one of these submatrices will have the form A-'mA, where m is the corresponding
submatrix of M. Then it is easy to show that A~'mA equals m, if, and only if, the
elements of m are of the form:

mj -Mm2
m= . (Al1)
mo mi

Hence, if equation (All) is satisfied for all submatrices of M, then T—MT
equals M. Conditions similar to equation (All) are required for T-!CT and T-KT to
equal C and K respectively. As may be seen from reference 6, such conditions are
satisfied for M, € and K matrices in general, even when gyroscopic effects are
present,

To evaluate T-IMT* it is again convenient to partition it into 2X2 sub-
matrices. Any one of these submatrices will have the form A‘lmA* where m is the
corresponding submatrix of M. Hence, notlng that m will be of the form given by
equation (All), A™'mA* will equal n where m is given by:

A -mo —nj
2= (A12)
mj -m2

A A A
Thus T 'MT* equals M, where the 2X2 submatrices m of M are formed from the
correspondin% submatrices m of M according to equations (All) and (Al2).
Similarly T~ "CT* equals c. Hence, equation (A8) simplifies to:

Mx + (2uM +C)x + (-w?M +uC +K)x = Fp . (A13)

Equation (Al3) is the equation of motion in the rotating frame. Note that the
coefficients of x, x and x are all constants. '
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