429 research outputs found

    Signal Processing

    Get PDF
    Contains research objectives, summary of research and reports on two research projects.Joint Services Electronics Programs (U. S. Army, U. S. Navy, and U. S. Air Force) under Contract DAAB07-71-C-0300Clarence J. LeBel Fun

    Validation of the Aura Microwave Limb Sounder HNOmeasurements

    Get PDF
    We assess the quality of the version 2.2 (v2.2) HNO3 measurements from the Microwave Limb Sounder (MLS) on the Earth Observing System Aura satellite. The MLS HNO3 product has been greatly improved over that in the previous version (v1.5), with smoother profiles, much more realistic behavior at the lowest retrieval levels, and correction of a high bias caused by an error in one of the spectroscopy files used in v1.5 processing. The v2.2 HNO3 data are scientifically useful over the range 215 to 3.2 hPa, with single-profile precision of ∌0.7 ppbv throughout. Vertical resolution is 3–4 km in the upper troposphere and lower stratosphere, degrading to ∌5 km in the middle and upper stratosphere. The impact of various sources of systematic uncertainty has been quantified through a comprehensive set of retrieval simulations. In aggregate, systematic uncertainties are estimated to induce in the v2.2 HNO3 measurements biases that vary with altitude between ±0.5 and ±2 ppbv and multiplicative errors of ±5–15% throughout the stratosphere, rising to ∌±30% at 215 hPa. Consistent with this uncertainty analysis, comparisons with correlative data sets show that relative to HNO3 measurements from ground-based, balloon-borne, and satellite instruments operating in both the infrared and microwave regions of the spectrum, MLS v2.2 HNO3 mixing ratios are uniformly low by 10–30% throughout most of the stratosphere. Comparisons with in situ measurements made from the DC-8 and WB-57 aircraft in the upper troposphere and lowermost stratosphere indicate that the MLS HNO3 values are low in this region as well, but are useful for scientific studies (with appropriate averaging)

    Memory for pitch in congenital amusia: Beyond a fine-grained pitch discrimination problem

    Get PDF
    Congenital amusia is a disorder that affects the perception and production of music. While amusia has been associated with deficits in pitch discrimination, several reports suggest that memory deficits also play a role. The present study investigated short-term memory span for pitch-based and verbal information in 14 individuals with amusia and matched controls. Analogous adaptive-tracking procedures were used to generate tone and digit spans using stimuli that exceeded psychophysically measured pitch perception thresholds. Individuals with amusia had significantly smaller tone spans, whereas their digits spans were a similar size to those of controls. An automated operation span task was used to determine working memory capacity. Working memory deficits were seen in only a small subgroup of individuals with amusia. These findings support the existence of a pitch-specific component within short-term memory and suggest that congenital amusia is more than a disorder of fine-grained pitch discrimination

    Creativity encounters between children and robots

    Get PDF
    Creativity is an intrinsic human ability with multiple benefits across the lifespan. Despite its importance, societies not always are well equipped with contexts for creativity stimulation; as a consequence, a major decline in creative abilities occurs at the age of 7 years old. We investigated the effectiveness of using a robotic system named YOLO as an intervention tool to stimulate creativity in children. During the intervention, children used YOLO as a character for their stories and through the interaction with the robot, creative abilities were stimulated. Our study (n = 62) included 3 experimental conditions: i) YOLO displayed behaviors based on creativity techniques; ii) YOLO displayed behaviors based on creativity techniques plus social behaviors; iii) YOLO was turned off, not displaying any behaviors. We measured children’s creative abilities at pre- and post-testing and their creative process through behavior analysis. Results showed that the interaction with YOLO contributed to higher creativity levels in children, specifically contributing to the generation of more original ideas during story creation. This study shows the potential of using social robots as tools to empower intrinsic human abilities, such as the ability to be creative.info:eu-repo/semantics/publishedVersio

    Validation of Aura Microwave Limb Sounder O-3 and CO observations in the upper troposphere and lower stratosphere

    Get PDF
    International audienceGlobal satellite observations of ozone and carbon monoxide from the Microwave Limb Sounder (MLS) on the EOS Aura spacecraft are discussed with emphasis on those observations in the 215–100 hPa region (the upper troposphere and lower stratosphere). The precision, resolution and accuracy of the data produced by the MLS “version 2.2” processing algorithms are discussed and quantified. O3 accuracy is estimated at ~40 ppbv +5% (~20 ppbv +20% at 215 hPa) while the CO accuracy is estimated at ~30 ppbv +30% for pressures of 147 hPa and less. Comparisons with expectations and other observations show good agreements for the O3 product, generally consistent with the systematic errors quoted above. In the case of CO, a persistent factor of ~2 high bias is seen at 215 hPa. However, the morphology is shown to be realistic, consistent with raw MLS radiance data, and useful for scientific study. The MLS CO data at higher altitudes are shown to be consistent with other observations

    Robust global sensitivity analysis of a river management model to assess nonlinear and interaction effects

    Get PDF
    The simulation of routing and distribution of water through a regulated river system with a river management model will quickly result in complex and nonlinear model behaviour. A robust sensitivity analysis increases the transparency of the model and provides both the modeller and the system manager with a better understanding and insight on how the model simulates reality and management operations. In this study, a robust, density-based sensitivity analysis, developed by Plischke et al. (2013), is applied to an eWater Source river management model. This sensitivity analysis methodology is extended to not only account for main effects but also for interaction effects. The combination of sensitivity indices and scatter plots enables the identification of major linear effects as well as subtle minor and nonlinear effects. The case study is an idealized river management model representing typical conditions of the southern Murray-Darling Basin in Australia for which the sensitivity of a variety of model outcomes to variations in the driving forces, inflow to the system, rainfall and potential evapotranspiration, is examined. The model outcomes are most sensitive to the inflow to the system, but the sensitivity analysis identified minor effects of potential evapotranspiration and nonlinear interaction effects between inflow and potential evapotranspiration

    Comparison of implementation strategies to influence adherence to the clinical pathway for screening, assessment and management of anxiety and depression in adult cancer patients (ADAPT CP): Study protocol of a cluster randomised controlled trial

    Full text link
    © 2018 The Author(s). Background: Health service change is difficult to achieve. One strategy to facilitate such change is the clinical pathway, a guide for clinicians containing a defined set of evidence-based interventions for a specific condition. However, optimal strategies for implementing clinical pathways are not well understood. Building on a strong evidence-base, the Psycho-Oncology Co-operative Research Group (PoCoG) in Australia developed an evidence and consensus-based clinical pathway for screening, assessing and managing cancer-related anxiety and depression (ADAPT CP) and web-based resources to support it - staff training, patient education, cognitive-behavioural therapy and a management system (ADAPT Portal). The ADAPT Portal manages patient screening and prompts staff to follow the recommendations of the ADAPT CP. This study compares the clinical and cost effectiveness of two implementation strategies (varying in resource intensiveness), designed to encourage adherence to the ADAPT CP over a 12-month period. Methods: This cluster randomised controlled trial will recruit 12 cancer service sites, stratified by size (large versus small), and randomised at site level to a standard (Core) versus supported (Enhanced) implementation strategy. After a 3-month period of site engagement, staff training and site tailoring of the ADAPT CP and Portal, each site will "Go-live", implementing the ADAPT CP for 12 months. During the implementation phase, all eligible patients will be introduced to the ADAPT CP as routine care. Patient participants will be registered on the ADAPT Portal to complete screening for anxiety and depression. Staff will be responsible for responding to prompts to follow the ADAPT CP. The primary outcome will be adherence to the ADAPT CP. Secondary outcomes include staff attitudes to and experiences of following the ADAPT CP, using the ADAPT Portal and being exposed to ADAPT implementation strategies, collected using quantitative and qualitative methods. Data will be collected at T0 (baseline, after site engagement), T1 (6 months post Go-live) and T2 (12 months post Go-live). Discussion: This will be the first cluster randomised trial to establish optimal levels of implementation effort and associated costs to achieve successful uptake of a clinical pathway within cancer care. Trial registration: The study was registered prospectively with the ANZCTR on 22/3/2017. Trial ID ACTRN1261700041134

    Validation of the Aura Microwave Limb Sounder HNO3 Measurements

    Get PDF
    We assess the quality of the version 2.2 (v2.2) HNO3 measurements from the Microwave Limb Sounder (MLS) on the Earth Observing System Aura satellite. The MLS HNO3 product has been greatly improved over that in the previous version (v1.5), with smoother profiles, much more realistic behavior at the lowest retrieval levels, and correction of a high bias caused by an error in one of the spectroscopy files used in v1.5 processing. The v2.2 HNO3 data are scientifically useful over the range 215 to 3.2 hPa, with single-profile precision of 0.7 ppbv throughout. Vertical resolution is 3–4 km in the upper troposphere and lower stratosphere, degrading to 5 km in the middle and upper stratosphere. The impact of various sources of systematic uncertainty has been quantified through a comprehensive set of retrieval simulations. In aggregate, systematic uncertainties are estimated to induce in the v2.2 HNO3 measurements biases that vary with altitude between ±0.5 and ±2 ppbv and multiplicative errors of ±5–15% throughout the stratosphere, rising to ±30% at 215 hPa. Consistent with this uncertainty analysis, comparisons with correlative data sets show that relative to HNO3 measurements from ground-based, balloon-borne, and satellite instruments operating in both the infrared and microwave regions of the spectrum, MLS v2.2 HNO3 mixing ratios are uniformly low by 10–30% throughout most of the stratosphere. Comparisons with in situ measurements made from the DC-8 and WB-57 aircraft in the upper troposphere and lowermost stratosphere indicate that the MLS HNO3 values are low in this region as well, but are useful for scientific studies (with appropriate averaging).PublishedD24S401.7. Osservazioni di alta e media atmosferaJCR Journalreserve
    • 

    corecore