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Abstract. The simulation of routing and distribution of wa-
ter through a regulated river system with a river management
model will quickly result in complex and nonlinear model
behaviour. A robust sensitivity analysis increases the trans-
parency of the model and provides both the modeller and the
system manager with a better understanding and insight on
how the model simulates reality and management operations.

In this study, a robust, density-based sensitivity analysis,
developed byPlischke et al.(2013), is applied to an eWa-
ter Source river management model. This sensitivity analy-
sis methodology is extended to not only account for main
effects but also for interaction effects. The combination of
sensitivity indices and scatter plots enables the identifica-
tion of major linear effects as well as subtle minor and
nonlinear effects.

The case study is an idealized river management model
representing typical conditions of the southern Murray–
Darling Basin in Australia for which the sensitivity of a vari-
ety of model outcomes to variations in the driving forces, in-
flow to the system, rainfall and potential evapotranspiration,
is examined. The model outcomes are most sensitive to the
inflow to the system, but the sensitivity analysis identified
minor effects of potential evapotranspiration and nonlinear
interaction effects between inflow and potential evapotran-
spiration.

1 Introduction

Water managers rely heavily on models to predict future wa-
ter availability, optimize water use and evaluate water man-
agement strategies in order to find a balance between envi-
ronmental, social and economic demands on the system. It
is therefore crucial to be aware of the ability of a model to
capture the dynamics of the hydrological cycle relevant to
the water management question. In recent decades, address-
ing this issue has been the focus of much research in hydro-
logical model calibration and predictive uncertainty analysis
(Gupta et al., 2012).

For a modeller, to arrive at a “well”-calibrated model or
to produce sensible and robust prediction intervals, it is es-
sential to have a thorough understanding of how the hydro-
logical system works and how this system is represented in
the model – how a variation in parameters, boundary condi-
tions or driving forces will affect the prediction of interest.
The knowledge gained from such sensitivity analysis is not
only of relevance during model development, it also provides
added value to the model as it can focus management and
monitoring to those aspects of the system and model that
are most important to the management of water resources
(Saltelli et al., 2008). Additionally, discussing model sensi-
tivities with stakeholders will remove the notion of the model
being a “black box” and can provide stakeholders with a
better appreciation of the accuracy of the model, which has
proven to be a key aspect of adoption of model results by
management (Patt, 2009; Bark et al., 2013).

River management models such as eWater Source (Welsh
et al., 2013) are increasingly used, especially in Australia,
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in the development of basin-wide water allocation plans. As
these plans directly affect the livelihood of people and the
health of ecosystems, it is essential that the models under-
pinning these plans have wide support and are robust. It is
therefore essential that practitioners have a set of tools for
sensitivity analysis available, tailored to the needs of water
allocation modelling. The most straightforward sensitivity
analysis technique is One-At-a-Time (OAT) sensitivity anal-
ysis in which one model aspect is changed while the oth-
ers are fixed. The sensitivity of the model output to varia-
tion of the tested parameter is proportional to the gradient
of the response surface. This is formalized in gradient-based
calibration routines, such as Levenberg–Marquardt optimiza-
tion. Examples of such OAT sensitivity analysis areDoherty
and Hunt(2009), Foglia et al.(2009), Castaings et al.(2009)
andPeeters et al.(2011). This methodology is attractive as
it requires a very limited number of model runs, about two
or three model runs per parameter evaluated, and, as long as
the model behaves linearly, parameter interaction effects can
be explored (Hill and Tiedeman, 2007). Saltelli and Annoni
(2010) highlight that OAT sensitivity analysis only provides
reliable and robust results if it can be shown that the model
behaviour is linear. This condition is seldom satisfied for hy-
drological models or even known before a sensitivity anal-
ysis. The Elementary Effects method (Campolongo et al.,
2007) is more robust against nonlinearity in the model be-
haviour, whilst still being frugal in the number of model runs.

Global sensitivity analysis techniques however do not re-
quire the model behaviour to be linear (Saltelli et al., 2008).
The most straightforward global sensitivity analysis is ei-
ther random or density-based sampling of parameter space
and visualizing scatter plots of the parameter value against
the prediction of interest (Wagener and Kollat, 2007; Peeters
et al., 2013). Variance-based methods, such as Sobol’ sen-
sitivity analysis (Saltelli and Annoni, 2010; Nossent et al.,
2011), use a scheme of structured resampling of a random
base sampling to decompose the variance of the metric of
interest into the main effects of a parameter and interaction
effects of other parameters.

The main drawback of variance-based methods is that it
assumes that the entire effect of a parameter can be summa-
rized by the variance (Borgonovo, 2007; Borgonovo et al.,
2011). Variance-based sensitivity indices will therefore be
less reliable if the response to a parameter has a skewed or
multi-modal distribution. Density-based sensitivity analysis
techniques attempt to account for this by incorporating the
entire distribution of the response of a prediction of interest
in the metric in a way that does not require any assumptions
on the shape of the distribution. The methodology suggested
by Plischke et al.(2013) implements such a density-based
sensitivity analysis technique which is independent of the pa-
rameter sampling scheme. This has the added benefit that as
no model runs need to be devoted to the resampling of a base
sampling, more computing resources can be directed to ex-
ploration of parameter space.

The goal of this study is to apply a density-based sensi-
tivity analysis in a river management modelling context to
assess its capability to identify and quantify nonlinear effects
and to extend the methodology to account for interaction ef-
fects. An idealized, hypothetical river management model
implemented in the eWater Source platform (Welsh et al.,
2013) serves as testing platform to assess the ability of the
sensitivity analysis methodology to quantify the influence of
a small number of forcing variables upon a variety of model
outcomes.

The next section presents the theoretical background and
numerical implementation of thePlischke et al.(2013) global
sensitivity analysis method. The river management model is
briefly introduced before presenting the results of the sensi-
tivity analysis and summarizing the findings in the discussion
and conclusion sections.

2 Methods

The sensitivity analysis introduced inPlischke et al.(2013)
provides a robust, global density-based sensitivity analysis,
independent of sampling strategy. This section provides a
short summary of this methodology. For a detailed overview
the interested reader is referred toPlischke et al.(2013).

ConsiderX andY the set of variables that comprise the
input and output respectively of a river system model. Fix-
ing X to a single realization, the parameter combinationx,
results in a conditional cumulative distribution ofY equal
to FY |X=x(y) and an equivalent density functionfY |X=x(y).
The importance of fixingX to x can be quantified by the sep-
aration between the unconditionalFY (y) and the conditional
FY |X=x(y) or, similarly, the separation betweenfY (y) and
fY |X=x(y). Using the L1-norm, the separation between the
two density functions can be written as

s(x) =

∫
Y

|fY (y) − fY |X=x(y)|dy. (1)

The importance of factorX on outcomeY can then be
defined as

δ(Y,X) =
1

2
E[s(X)]

=
1

2

∫
X

fX(x)

∫
Y

|fY (y) − fY |X=x(y)|dydx. (2)

The sensitivity indexδ(X,Y ) varies between 0 and 1 and
it can be shown that this index is zero whenX andY are
completely independent (Plischke et al., 2013).

To computeδ(X,Y ) the integrals in Eq. (2) need to be ap-
proximated numerically. This can be achieved by takingn

samples of the parameter spaceX and computing the cor-
responding values forY . The method does not impose any
restrictions on the sampling strategy of the parameter space.
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Figure 1. (a)Map showing the extent (indicated by pink shading) of the idealized river system model within the Murray–Darling Basin and
(b) schematic structure of the river management model.

This implies that the methodology can be applied with ran-
dom sampling, quasi-random sampling (e.g. Latin Hyper-
cube Sampling or Sobol’ sequences) or Markov chain Monte
Carlo simulation.

The resulting data set is partitioned intoM classesCm with
m = 1, . . . ,M. For each classCm, the density function can be
approximated with a kernel smoothing function with kernel
K(.) and bandwidthα (Devroye and Gyorfi, 1985):

f̂Y (y) =
1

n

n∑
i=1

1

α
K

(
y − yi

α

)

f̂Y |Cm(y) =
1

nm

nm∑
i:xi∈Cm

1

αm

K

(
y − yi

αm

)
, (3)

wherenm is the number of samples in classCm andαm the
corresponding bandwidth for the kernel smoothing function.

The next step is to approximate the L1-norm between the
two distributions for each class. Using a predefined number
of quadrature points{ỹj , j = 1, . . ., l}, the separation can be
computed as

sm,j = f̂Y (ỹj ) − f̂Y |Cm(ỹj )

Ŝm =
1

2

l−1∑
j=1

(
|sm,j+1| + |sm,j |

)(
ỹj+1 − ỹj

)
. (4)

The sensitivity indexδ can then be approximated by

δ̂ =
1

2n

M∑
m=1

nmŜm. (5)

To avoid bias in the sensitivity index and to assess the ro-
bustness of the sensitivity index estimate, it is recommended
to perform a bootstrap of the sensitivity index (Efron, 1977)

and to adjust̂δ with the mean of the bootstrap̄δ∗:

ˆ̂
δ = 2δ̂ − δ̄∗. (6)

ˆ̂
δ provides the sensitivity index of the main effect of a

variable.Plischke et al.(2013) however does not provide a
method to explore second-order effects, i.e. the interaction
between two variables. To estimate second-order effects be-
tween variablesX1 andX2, the samples are subdivided into
n groups of equal intervals forX1. The sensitivity index̂δ for
X2, δ̂X2, is computed for each interval. If there is no interac-
tion effect betweenX1 andX2, thenδ̂X2 will not vary with
the level ofX1. To quantify this, the variance ofδ̂X2 is com-
puted over alln levels ofX1. Small variances indicate small
interaction effects and vice versa.

3 Model description and setup

The case study is a hypothetical river system model (Fig.1),
based on a simplified version of the Murrumbidgee River
model in New South Wales, Australia (Dutta et al., 2012;
Podger et al., 2014). Using the full version of the Mur-
rumbidgee River model was not warranted, not only because
of the complexity of the system and the management rules,
but, more importantly, because of legal issues with regard
to model licensing and confidentiality. The idealized, hypo-
thetical model retains most of the relevant complexity prac-
titioners encounter when creating water allocation models,
which is more than sufficient to illustrate the sensitivity anal-
ysis methodology.

In the model, water is routed from a storage reservoir
through three river reaches. Routing starts in reach 1 at the
storage reservoir with hydropower generators that receive
water from a single tributary inflow. In reach 1, water is taken
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Table 1.Output variables of the Source river system model.

Name Description Units

UpperFlow Flow rate at the gauge at the end of the first reach m3 s−1

MiddleFlow Flow rate at the gauge at the end of the middle reach m3 s−1

EndFlow Flow rate at the gauge at the end of the final reach m3 s−1

$AlgalBloom Monetary value generated by recreation as function of the
risk of algal blooms

106 AUD

$Stor Monetary value generated by recreation on storages 106 AUD
$TotalAg Monetary value generated by irrigated agriculture 106 AUD
Hydropower Electricity generated from the storage reservoir kWh
GenSec Percentage of time general security licences receive their

full entitlement
%

from the system for town water supply and irrigation and wa-
ter is received from unregulated rain-fed tributaries. From the
Upper Gauge at the end of reach 1, water is routed through
reach 2. In this reach, interaction with groundwater is taken
into account by an exchange flux. As in reach 1, water is
received from unregulated, rain-fed tributaries and water is
taken out for irrigation and town water supply. In addition
to these offtake, water is diverted into an off-river wetland
system. Reach 3 starts at the middle gauge and is similar to
reach 2. It also has offtake for town water supply, irrigation
and off-river wetlands and receives inflow from rainfed trib-
utaries. Groundwater–surface water interaction is not taken
into account in this reach. Each reach has a term represent-
ing unaccounted losses. The loss relationships are taken from
the more complex model. The total travel time from headwa-
ter to end-of-system is 18 days (3 days for reach 1, 6 days
for reach 2 and 9 days for reach 3). These values, together
with the other parameters influencing routing of water are
also taken and aggregated from the more complex model.

Daily time series of rainfall and evaporation from 1895
to 2006 are obtained from SILO (http://www.longpaddock.
qld.gov.au/silo/) for sites representative of each of the three
reaches. These time series are used to simulate inflow from
tributaries and compute irrigation demand. Inflow into the
main storage in the model is taken from daily gauged data
from 1895 to 2006.

The town water demands are based on a fixed annual pat-
tern (8.8, 3.0 and 1.2× 106 m3 year−1 for reaches 1, 2 and 3
respectively). Irrigation demands are based on a reach-based
aggregation of irrigation use as well as rationalizing of crop
types. There are environmental demands for the wetlands in
reach 2 and 3, which are designed to establish and maintain
favourable habitat conditions for indigenous fauna and flora
(Janssen, 2012).

Two aspects of water management are considered:
347 m3 s−1 order constraint on storage releases, i.e. the max-
imum flow that can be requested by water users in the system
of the storage, and an annual allocation system. The alloca-
tion system comprises high and general security order debit

annual accounting schemes. Water is first allocated from the
storage to high security entitlement holders and only once
these are fulfilled is water allocated to general security en-
titlement holders. The start of the water year is 1 July with
allocations updated continuously throughout the year, where
these include allowances for minimum tributary inflows and
delivery losses. At the end of the water year accounts are re-
set to zero. Licence entitlements were aggregated on a reach
basis. Two socio-economic indicators have been included to
indicate the impacts of storage volumes on recreational us-
age and mid-river flows on algal blooms and the associated
impact on recreational usage. There are three storage vol-
ume categories (< 10,< 50 and> 50%) for recreational us-
age based on visitor numbers. Recreational benefits are cal-
culated for periods of time the model is at each threshold,
using theCrase and Gillespie(2008) 100 000 visitor esti-
mate to Lake Hume. Estimates of visitor numbers at high
and low storage volumes are based on this estimate and the
actual Tourism Research Australia (TRA) average, low and
high visitor numbers in the Murrumbidgee catchment in the
period 2003–2010 (DRET, 2010). Benefit transfer recreation
values are taken from the same study (updated to 2012 Aus-
tralian dollars (AUD) using the Australian Consumer Price
Index, CPI). There are three risk of algal bloom categories
(no bloom, alert and bloom) – no bloom occurs if there is a
flow of at least 11.6 m3 s−1 in the previous 7 days and alert
if this flow occurs within the previous 14 days; if flow does
not exceed 11.6 m3 s−1 in the previous 14 days, algal bloom
is simulated to occur. Australian dollars have been associ-
ated with loss of amenity in the weeks when there is an alert
or bloom using the thresholds, estimated visitor numbers us-
ing TRA data and high and low estimates of river recreation
based on survey data (DRET, 2010), and benefit transfer of
general recreation benefits fromMorrison and Hatton Mac-
Donald(2010) (2010 AUD values are updated to 2012 AUD
using the CPI and where the full value is used for no bloom,
a proportion based onCrase and Gillespie(2008) for an alert
and 0 AUD for a bloom).
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Figure 2. Scatter plots ofM̂, the difference between kernel density estimates for each simulation and the kernel density estimate of the
reference simulation for all forcing data and model output variables for the eWater Source hypothetical river management model.

Figure 3. Sensitivity indices,ˆ̂δ, for all forcing data and model out-
put variables for the eWater Source hypothetical river management
model.

4 Results

In the sensitivity analysis, the three main forcing variables
are considered: the system inflow (Inflow), the precipitation
(Rain) and the potential evapotranspiration (PET). The latter
two affect the inflow into the reaches and the irrigation de-
mand. Inspired by the work ofLeblanc et al.(2012), the forc-
ing variables are changed through a multiplier to the corre-
sponding input time series with the range of the multiplier for
each variable between 0.5 and 1.5. This range encompasses
both historical variation in hydrological input and output, as
well as the expected change under various climate change
models and scenarios. While elaborate schemes are available
to perturb hydrological time series, this is not warranted in
this study as the focus is on metrics that integrate the entire
flow time series. As such, the emphasis of this research is on
changes in total flow in or out of the model, rather than in
changes of the timing of flow.

Using Sobol’ sequences (Sobol, 1976), 100 000 quasi-
random samples of the three input variables are generated.
For each of these samples a range of output time series is
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Figure 4. Scatter plots of interaction of the driving forces. The in-
tensity of the colour scale is proportional to the model outcome
value, where dark red indicates high values and light red indicates
low values.

calculated (Pickett et al., 2013). Table1 lists the names of
the output series and a short description.

Each of the output variables in Table1 is a daily time se-
ries. The metric for the sensitivity for different forcing data
(M̂) is the difference between the kernel density estimate of
the daily times series of a randomly selected reference simu-
lation (f̂Yref(y)) and the kernel density estimate of the daily
time series for the changed forcing data (f̂Ysim(y)):

f̂Yref(y) =
1

n

n∑
j=1

1

α
K

(
yref − yref,i

α

)

Figure 5. Sensitivity indexδ̂ of the effect of Rain (blue) and PET
(red) on $Stor for 100 equal intervals of Inflow.

f̂Ysim(y) =
1

n

n∑
j=1

1

α
K

(
ysim− ysim,i

α

)
dj = f̂Yref(ỹj ) − f̂Ysim(ỹj )

M̂ =
1

2

l−1∑
j=1

(
dj+1 + dj

)(
|ỹj+1 − ỹj |

)
(7)

The choice of this metric is motivated by the fact that, since
the case study is an idealized, hypothetical model, it is not
possible to directly compare the results with observations. In
addition to this, and more importantly, the variety of model
outcomes examined in this study are more than likely to
be affected by different aspects of the hydrograph. Simi-
lar to choosing an objective function in traditional calibra-
tion or a likelihood function in uncertainty analysis, such
metric needs to be tailored to be able to capture the rele-
vant aspects of the hydrograph. Choosing an ill-suited met-
ric can have huge consequences for the sensitivity analysis,
calibration or uncertainty analysis, as pointed out inMonta-
nari and Koutsoyiannis(2012) andNearing(2014). The met-
ric presented in Eq. (7) is designed to provide an as gen-
eral and robust as possible measure of the difference be-
tween two time series as not to bias the interpretation of the
sensitivity analysis.

4.1 Main effects

Figure2 shows the scatter plots of sensitivity metricM̂ for all
combinations of forcing data and output variables. It is clear
that the dominant influencing driving variable is Inflow, as
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Figure 6. Var(δ̂X1−X2) for all combinations of driving forces for all model outcomes. High values indicate potential interaction betweenX1
andX2. The values for Hydropower are omitted in order not to distort the visualization.

a strong response is noticeable for variations in this driving
variable for all output variables with the exception of Hy-
droPower. The effects of “Rain” and “PET” are less pro-
nounced. A very striking feature are the many nonlineari-
ties in the response surface of the hypothetical model. This is
mostly due to a number of threshold values used in the man-
agement rules of the river management system. For instance,
generation of hydro-power is only possible when the storage
level in the dam exceeds a predefined threshold related to the
height of the water intake point for the turbines.

Figure 3 shows a barplot of the sensitivity indicesˆ̂δ for
all main effects. These indices confirm the dominant influ-
ence of Inflow on most output variables. They provide a rel-
ative ranking of the influence of the input variable Inflow
on the various output variables. MiddleFlow, EndFlow and
GenSec respond to a similar degree to changes in Inflow and
the same is true for the output variables related to monetary
value ($AlgalBloom, $Stor and $TotalAg). HydroPower is
least influenced by Inflow, which, from Fig.2, is clearly re-
lated to the threshold-induced nonlinear behaviour.

The methodology is also able to quantify the often small
and nonlinear effects of the other forcing variables. This is
especially noticeable for PET. There is a clear but highly non-

linear effect of PET on $Stor, which is reflected in a higherˆ̂
δ.

The output variable HydroPower has a bimodal distribution
where the majority of simulations have an̂M close to zero.
Nevertheless, the global sensitivity method is able to distin-
guish and quantify the subtle trends in the non-zero values
for the different input variables.

4.2 Interaction effects

The previous section established the importance of Inflow as
the main driving variable. It is however from both a manage-
ment and modelling perspective interesting to have an under-
standing of how the interaction between variables affects the
model outcome.

Figure4 shows plots with the factor values on thex- and
y-axis, with a colour scale to visualizêM for the three com-
binations of interaction of the driving forces (Inflow-Rain,
Inflow-PET and Rain-PET) for all eight model outcomes.

The first column shows that the effect of Inflow on most of
the model outputs does not vary with the value of Rain. There
is however a clear interaction between Inflow and PET for
most of the model outputs; while the Inflow response is the
dominant feature in the plots, the shape of this response de-
pends on the value of PET. HydroPower is a noted exception
as it displays very little structure in the scatter plots. This is
because hydropower is generated by release of water from
the reservoir in function of the demand and the water level
in the reservoir. These management rules create a buffer to
immediate impact from rainfall and inflow and also result in
nonlinear, threshold related behaviour.

Very little structure is noticeable in the third column of
Fig. 4, which shows the interaction between Rain and PET,
reflecting the limited influence both driving forces have as a
main effect.

To quantify the interaction effect for each interaction com-
bination in Fig.4, the variance of thêδ of the variable on
the y-axis is computed for 100 equal intervals of the vari-
able on thex-axis. By using Sobol’ sequences to generate
the 100000 samples of the parameter space, each equal in-
terval of thex-axis variable has approximately 1000 samples
to compute thêδ.

Figure 5 illustrates this for the interaction effects of In-
flow, Rain and PET on $Stor. The sensitivity index values for
Rain are low and hardly vary for different levels of Inflow,
which is an indication of very limited interaction between
Rain and Inflow, as confirmed by the scatter plot (Fig.4).
The δ̂ values for PET vary markedly with the level of Inflow.
This sensitivity index reaches a minimum for Inflow values
close to 1, while reaching peaks close to values of 0.75 and
1.1. This is reflected in the variance of theδ̂ values which
is 4.5× 10−4 for the Inflow–Rain couple and 3.5× 10−3 for
Inflow–PET. Figure6 shows the variance of the sensitivity
indices for all interaction pairs for all model outcomes. The
values for Hydropower are much higher than for the other
model outcomes due to the nonlinear behaviour. They were
omitted from Fig.6 as they distorted the visualization.

The most dominant interaction effects are between Inflow
and PET for $TotalAg and UpperFlow, followed by $Algal-
Bloom, $Stor and MiddleFlow.

www.hydrol-earth-syst-sci.net/18/3777/2014/ Hydrol. Earth Syst. Sci., 18, 3777–3785, 2014
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5 Discussion

The sensitivity analysis of the hypothetical river management
model highlights inflow as a crucial variable of the model and
how this affects the economic, environmental and sociolog-
ical functions of the river. This emphasizes the importance
of an accurate characterization of the flow rates of upstream
areas when modelling flow routing in regulated systems com-
parable to the case study, i.e. the regulated river systems of
the Murray–Darling Basin in Australia. An accurate charac-
terization of flow rates not only entails maintaining a dense
river gauge network, it also means adequately describing the
measurement uncertainty in the flow rates, not in the least the
uncertainty introduced by the rating curve that describes the
stage–discharge relationship (Tomkins, 2012). The work of
Hughes et al.(2014) illustrates this as they identify the in-
flow from ungauged catchment as crucial in the calibration
of river management models.

Direct precipitation in the storage, wetlands and irri-
gation areas has a very minor influence on the model
outcomes. This is mostly due to the small volume of
rainfall (0.633 km3 yr−1) compared to the inflow volume
(4.4 km3 yr−1) and the correlation between the inflow vol-
ume and rainfall. Any effect of rainfall will therefore be
dwarfed by the effect of inflow to the system. The interac-
tion effect of Inflow and PET is mostly due to the feedback
mechanism as irrigation requirements increase with increas-
ing potential evapotranspiration.

Such parameter interaction is well known in other areas
of hydrological modelling, such as in rainfall–runoff mod-
elling (Gallagher and Doherty, 2007; Zhang et al., 2013;
Peeters et al., 2013) and in groundwater modelling (Doherty
and Hunt, 2009), although it has not received much atten-
tion in river system modelling.Letcher et al.(2007) discuss
the importance of interacting effects in water allocation mod-
els, without however providing a rigorous quantitative frame-
work to evaluate the effects.

The sensitivity analysis in this study was limited to mul-
tiplying factors on three driving forces. It would be very in-
sightful to include other model parameters in the sensitivity
analysis, especially those controlling storage volumes and ir-
rigation requirements. Along the same lines, including the
parameters of the management rules, e.g. rules on alloca-
tions, in the sensitivity analysis can yield additional under-
standing of the operational management of the river system,
as shown byMicevski et al.(2011).

6 Conclusions

The density-based sensitivity analysis ofPlischke et al.
(2013) has been applied to a river management model rep-
resenting an idealized regulated river system representative
of the southern Murray–Darling Basin in Australia to iden-

tify the main and interaction effects of three driving forces on
several hydrological and socio-economic model outcomes.

The extended sensitivity analysis method presented in this
paper provides a quantitative measure of sensitivity of the
main and interaction effects and, through a combination with
qualitative visual inspection of scatter plots, proved to be able
to identify not only major effects but also subtle interactions,
even in the presence of strong nonlinearities.

Due to the small dimensionality of the case study, it was
possible to visualize all main effects and their interactions
through scatter plots for all model outcomes. Although this
will be challenging for higher-dimensional problems, the vi-
sual inspection of scatter plots is an invaluable complement
to the sensitivity indices.

Understanding the dynamics of river system models is of-
ten not intuitive, especially in larger or basin-scale models
(Johnston and Smakhtin, 2014). A robust and comprehen-
sive sensitivity analysis is an invaluable step in model devel-
opment to elucidate the often intricate interactions between
driving forces, management rules and parameters. Increased
understanding of the model will not only lead to improve-
ments in calibration and prediction, it also has enormous po-
tential in establishing the credibility and understanding of
models.
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