133 research outputs found

    Characterization of Nanoparticle Release from Surface Coatings by the Simulation of a Sanding Process

    Get PDF
    Nanoparticles are used in industrial and domestic applications to control customized product properties. But there are several uncertainties concerning possible hazard to health safety and environment. Hence, it is necessary to search for methods to analyze the particle release from typical application processes. Based on a survey of commercial sanding machines, the relevant sanding process parameters were employed for the design of a miniature sanding test setup in a particle-free environment for the quantification of the nanoparticle release into air from surface coatings. The released particles were moved by a defined airflow to a fast mobility particle sizer and other aerosol measurement equipment to enable the determination of released particle numbers additionally to the particle size distribution. First, results revealed a strong impact of the coating material on the swarf mass and the number of released particles

    Direct susceptibility testing for multi drug resistant tuberculosis: A meta-analysis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>One of the challenges facing the tuberculosis (TB) control programmes in resource-limited settings is lack of rapid techniques for detection of drug resistant TB, particularly multi drug resistant tuberculosis (MDR TB). Results obtained with the conventional indirect susceptibility testing methods come too late to influence a timely decision on patient management. More rapid tests directly applied on sputum samples are needed. This study compared the sensitivity, specificity and time to results of four direct drug susceptibility testing tests with the conventional indirect testing for detection of resistance to rifampicin and isoniazid in <it>M. tuberculosis</it>. The four direct tests included two in-house phenotypic assays – Nitrate Reductase Assay (NRA) and Microscopic Observation Drug Susceptibility (MODS), and two commercially available tests – Genotype<sup>® </sup>MTBDR and Genotype<sup>® </sup>MTBDR<it>plus </it>(Hain Life Sciences, Nehren, Germany).</p> <p>Methods</p> <p>A literature review and meta-analysis of study reports was performed. The Meta-Disc software was used to analyse the reports and tests for sensitivity, specificity, and area under the summary receiver operating characteristic (sROC) curves. Heterogeneity in accuracy estimates was tested with the Spearman correlation coefficient and Chi-square.</p> <p>Results</p> <p>Eighteen direct DST reports were analysed: NRA – 4, MODS- 6, Genotype MTBDR<sup>® </sup>– 3 and Genotype<sup>® </sup>MTBDR<it>plus </it>– 5. The pooled sensitivity and specificity for detection of resistance to rifampicin were 99% and 100% with NRA, 96% and 96% with MODS, 99% and 98% with Genotype<sup>® </sup>MTBDR, and 99% and 99% with the new Genotype<sup>® </sup>MTBDR<it>plus</it>, respectively. For isoniazid it was 94% and 100% for NRA, 92% and 96% for MODS, 71% and 100% for Genotype<sup>® </sup>MTBDR, and 96% and 100% with the Genotype<sup>® </sup>MTBDR<it>plus</it>, respectively. The area under the summary receiver operating characteristic (sROC) curves was in ranges of 0.98 to 1.00 for all the four tests. Molecular tests were completed in 1 – 2 days and also the phenotypic assays were much more rapid than conventional testing.</p> <p>Conclusion</p> <p>Direct testing of rifampicin and isoniazid resistance in <it>M. tuberculosis </it>was found to be highly sensitive and specific, and allows prompt detection of MDR TB.</p

    Evaluation of Xpert® MTB/RIF and ustar easyNAT™ TB IAD for diagnosis of tuberculous lymphadenitis of children in Tanzania : a prospective descriptive study

    Get PDF
    Fine needle aspiration biopsy has become a standard approach for diagnosis of peripheral tuberculous lymphadenitis. The aim of this study was to compare the performance of Xpert MTB/RIF and Ustar EasyNAT TB IAD nucleic acid amplification assays, against acid-fast bacilli microscopy, cytology and mycobacterial culture for the diagnosis of TB lymphadenitis in children from a TB-endemic setting in Tanzania.; Children of 8 weeks to 16 years of age, suspected of having TB lymphadenitis, were recruited at a district hospital in Tanzania. Fine needle aspirates of lymph nodes were analysed using acid-fast bacilli microscopy, liquid TB culture, cytology, Xpert MTB/RIF and EasyNAT. Latent class analysis and comparison against a composite reference standard comprising "culture and/or cytology" was done, to assess the performance of Xpert MTB/RIF and EasyNAT for the diagnosis of TB lymphadenitis.; Seventy-nine children were recruited; 4 were excluded from analysis. Against a composite reference standard of culture and/or cytology, Xpert MTB/RIF and EasyNAT had a sensitivity and specificity of 58 % and 93 %; and 19 % and 100 % respectively. Relative to latent class definitions, cytology had a sensitivity of 100 % and specificity of 94.7 %.; Combining clinical assessment, cytology and Xpert MTB/RIF may allow for a rapid and accurate diagnosis of childhood TB lymphadenitis. Larger diagnostic evaluation studies are recommended to validate these findings and on Xpert MTB/RIF to assess its use as a solitary initial test for TB lymphadenitis in children

    An Integrated Approach to Rapid Diagnosis of Tuberculosis and Multidrug Resistance Using Liquid Culture and Molecular Methods in Russia

    Get PDF
    Objective: To analyse the feasibility, cost and performance of rapid tuberculosis (TB) molecular and culture systems, in a high multidrug-resistant TB (MDR TB) middle-income region (Samara, Russia) and provide evidence for WHO policy change. Methods: Performance and cost evaluation was conducted to compare the BACTEC™ MGIT™ 960 system for culture and drug susceptibility testing (DST) and molecular systems for TB diagnosis, resistance to isoniazid and rifampin, and MDR TB identification compared to conventional Lowenstein-Jensen culture assays. Findings: 698 consecutive patients (2487 sputum samples) with risk factors for drug-resistant tuberculosis were recruited. Overall M. tuberculosis complex culture positivity rates were 31.6% (787/2487) in MGIT and 27.1% (675/2487) in LJ (90.5% and 83.2% for smear-positive specimens). In total, 809 cultures of M. tuberculosis complex were isolated by any method. Median time to detection was 14 days for MGIT and 36 days for LJ (10 and 33 days for smear positive specimens) and indirect DST in MGIT took 9 days compared to 21 days on LJ. There was good concordance between DST on LJ and MGIT (96.8% for rifampin and 95.6% for isoniazid). Both molecular hybridization assay results correlated well with MGIT DST results, although molecular assays generally yielded higher rates of resistance (by approximately 3% for both isoniazid and rifampin). Conclusion: With effective planning and logistics, the MGIT 960 and molecular based methodologies can be successfully introduced into a reference laboratory setting in a middle incidence country. High rates of MDR TB in the Russian Federation make the introduction of such assays particularly useful. © 2009 Balabanova et al

    Genetic variation of Mycobacterium tuberculosis circulating in Kharkiv Oblast, Ukraine

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>A persistent increase of tuberculosis cases has recently been noted in the Ukraine. The reported incidence of drug-resistant isolates of <it>M. tuberculosis </it>is growing steadily; however, data on the genetic variation of isolates of <it>M. tuberculosis </it>circulating in northern Ukraine and on the spectrum and frequency of occurrence of mutations determining resistance to the principal anti-tuberculosis drugs isoniazid and rifampicin have not yet been reported.</p> <p>Methods</p> <p>Isolates of <it>M. tuberculosis </it>from 98 tuberculosis patients living in Kharkiv Oblast (Ukraine) were analyzed using VNTR- and RFLP-IS6110-typing methods. Mutations associated with resistance to rifampicin and isoniazid were detected by RFLP-PCR methods, and also confirmed by sequencing.</p> <p>Results</p> <p>We identified 75 different genetic profiles. Thirty four (34%) isolates belonged to the Beijing genotype and 23 (23%) isolates belonged to the LAM family. A cluster of isolates belonging to the LAM family had significant genetic heterogeneity, indicating that this family had an ancient distribution and circulation in this geographical region. Moreover, we found a significant percentage of the isolates (36%) belonged to as yet unidentified families of <it>M. tuberculosis </it>or had individual non-clustering genotypes. Mutations conferring rifampicin and isoniazid resistance were detected in 49% and 54% isolates, respectively. Mutations in codon 531 of the <it>rpoB </it>gene and codon 315 of the <it>katG </it>gene were predominant among drug-resistant isolates. An association was found for belonging to the LAM strain family and having multiple drug resistance (R = 0.27, p = 0.0059) and also for the presence of a mutation in codon 531 of the <it>rpoB </it>gene and belonging to the Beijing strain family (R = 0.2, p = 0.04).</p> <p>Conclusions</p> <p>Transmission of drug-resistant isolates seems to contribute to the spread of resistant TB in this oblast. The Beijing genotype and LAM genotype should be seen as a major cause of drug resistant TB in this region.</p

    Resistant mutants of Mycobacterium tuberculosis selected in vitro do not reflect the in vivo mechanism of isoniazid resistance

    Get PDF
    The high prevalence of isoniazid-resistant Mycobacterium tuberculosis is often explained by a high mutation rate for this trait, although detailed information to support this theory is absent. We studied the development of isoniazid resistance in vitro, making use of a laboratory strain of M. tuberculosis. Spontaneous isoniazid-resistant mutants were characterized by molecular methods allowing identification of the most commonly encountered resistance-conferring mutations. Additionally, we determined the in vitro mutation rates for isoniazid and rifampicin resistance, and characterized the genome of a triple-resistant strain. Results confirm that the in vitro mutation rate for isoniazid resistance (3.2 x 10(-7) mutations/cell division) is much higher than the rate for rifampicin resistance (9.8 x 10(-9) mutations/cell division). However, in the majority of the in vitro mutants katG was partially or completely deleted and neither of the two most common in vivo mutations, katG-S315T or inhA-C(-)15T, were found in 120 isogenic mutants. This implies that clinically prevalent resistance mutations were present in <0.8% of isoniazid-resistant strains selected in vitro (95% CI 0%-2.5%). The triple-resistant strain had acquired isoniazid resistance via a 49 kbp deletion, which included katG. Apart from previously identified resistance-conferring mutations, three additional point mutations were acquired during sequential selection steps. These outcomes demonstrate that the in vivo mechanism of isoniazid resistance is not reflected by in vitro experiments. We therefore conclude that the high in vitro mutation rate for isoniazid resistance is not a satisfactory explanation for the fact that isoniazid monoresistance is significantly more widespread than monoresistance to rifampici

    Drug Resistant Mycobacterium tuberculosis of the Beijing Genotype Does Not Spread in Sweden

    Get PDF
    BACKGROUND: Drug resistant (DR) and multi-drug resistant (MDR) tuberculosis (TB) is increasing worldwide. In some parts of the world 10% or more of new TB cases are MDR. The Beijing genotype is a distinct genetic lineage of Mycobacterium tuberculosis, which is distributed worldwide, and has caused large outbreaks of MDR-TB. It has been proposed that certain lineages of M. tuberculosis, such as the Beijing lineage, may have specific adaptive advantages. We have investigated the presence and transmission of DR Beijing strains in the Swedish population. METHODOLOGY/PRINCIPAL FINDINGS: All DR M. tuberculosis complex isolates between 1994 and 2008 were studied. Isolates that were of Beijing genotype were investigated for specific resistance mutations and phylogenetic markers. Seventy (13%) of 536 DR strains were of Beijing genotype. The majority of the patients with Beijing strains were foreign born, and their country of origin reflects the countries where the Beijing genotype is most prevalent. Multidrug-resistance was significantly more common in Beijing strains than in non-Beijing strains. There was a correlation between the Beijing genotype and specific resistance mutations in the katG gene, the mabA-inhA-promotor and the rpoB gene. By a combined use of RD deletions, spoligotyping, IS1547, mutT gene polymorphism and Rv3135 gene analysis the Beijing strains could be divided into 11 genomic sublineages. Of the patients with Beijing strains 28 (41%) were found in altogether 10 clusters (2-5 per cluster), as defined by RFLP IS6110, while 52% of the patients with non-Beijing strains were in clusters. By 24 loci MIRU-VNTR 31 (45%) of the patients with Beijing strains were found in altogether 7 clusters (2-11 per cluster). Contact tracing established possible epidemiological linkage between only two patients with Beijing strains. CONCLUSIONS/SIGNIFICANCE: Although extensive outbreaks with non-Beijing TB strains have occurred in Sweden, Beijing strains have not taken hold, in spite of the proximity to high prevalence countries such as Russia and the Baltic countries. The Beijing sublineages so far introduced in Sweden may not be adapted to spread in the Scandinavian population

    Analysis of gene mutations associated with isoniazid, rifampicin and ethambutol resistance among Mycobacterium tuberculosis isolates from Ethiopia

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The emergence of drug resistance is one of the most important threats to tuberculosis control programs. This study was aimed to analyze the frequency of gene mutations associated with resistance to isoniazid (INH), rifampicin (RMP) and ethambutol (EMB) among <it>Mycobacterium tuberculosis </it>isolates from Northwest Ethiopia, and to assess the performance of the GenoType<sup>® </sup>MTBDRplus and GenoType<sup>® </sup>MTBDRsl assays as compared to the BacT/ALERT 3D system.</p> <p>Methods</p> <p>Two hundred sixty <it>Mycobacterium tuberculosis </it>isolates from smear positive tuberculosis patients diagnosed between March 2009 and July 2009 were included in this study. Drug susceptibility tests were performed in the Institute of Medical Microbiology and Epidemiology of Infectious Diseases, University Hospital of Leipzig, Germany.</p> <p>Results</p> <p>Of 260 isolates, mutations conferring resistance to INH, RMP, or EMB were detected in 35, 15, and 8 isolates, respectively, while multidrug resistance (MDR) was present in 13 of the isolates. Of 35 INH resistant strains, 33 had mutations in the <it>katG </it>gene at Ser315Thr 1 and two strains had mutation in the <it>inhA </it>gene at C15T. Among 15 RMP resistant isolates, 11 had <it>rpoB </it>gene mutation at Ser531Leu, one at His526Asp, and three strains had mutations only at the wild type probes. Of 8 EMB resistant strains, two had mutations in the <it>embB </it>gene at Met306Ile, one at Met306Val, and five strains had mutations only at the wild type probes. The GenoType<sup>® </sup>MTBDRplus assay had a sensitivity of 92% and specificity of 99% for INH resistance, and 100% sensitivity and specificity to detect RMP resistance and MDR. The GenoType<sup>® </sup>MTBDRsl assay had a sensitivity of 42% and specificity of 100% for EMB resistance.</p> <p>Conclusion</p> <p>The dominance of single gene mutations associated with the resistance to INH and RMP was observed in the codon 315 of the <it>katG </it>gene and codon 531 of the <it>rpoB </it>gene, respectively. The GenoType<sup>® </sup>MTBDRplus assay is a sensitive and specific tool for diagnosis of resistance to INH, RMP and MDR. However, the GenoType<sup>® </sup>MTBDRsl assay shows limitations in detecting resistance to EMB.</p
    corecore