323 research outputs found

    Multigap Superconductivity in Y2_2C3_3: A 13^{13}C-NMR Study

    Full text link
    We report on the superconducting (SC) properties of Y2_2C3_3 with a relatively high transition temperature Tc=15.7T_{\rm c}=15.7 K investigated by 13^{13}C nuclear-magnetic-resonance (NMR) measurements under a magnetic field. The 13^{13}C Knight shift has revealed a significant decrease below TcT_{\rm c}, suggesting a spin-singlet superconductivity. From an analysis of the temperature dependence of the nuclear spin-lattice relaxation rate 1/T11/T_1 in the SC state, Y2_2C3_3 is demonstrated to be a multigap superconductor that exhibits a large gap 2Δ/kBTc=52\Delta/k_{\rm B}T_{\rm c}=5 at the main band and a small gap 2Δ/kBTc=22\Delta/k_{\rm B}T_{\rm c}=2 at other bands. These results have revealed that Y2_2C3_3 is a unique multigap s-wave superconductor similar to MgB2_2.Comment: 4 pages, 5 figure

    Evidence for Strong-coupling S-wave Superconductivity in MgB2 :11B NMR Study

    Get PDF
    We have investigated a gap structure in a newly-discovered superconductor, MgB2 through the measurement of 11B nuclear spin-lattice relaxation rate, ^{11}(1/T_1). ^{11}(1/T_1) is proportional to the temperature (T) in the normal state, and decreases exponentially in the superconducting (SC) state, revealing a tiny coherence peak just below T_c. The T dependence of 1/T_1 in the SC state can be accounted for by an s-wave SC model with a large gap size of 2\Delta /k_BT_c \sim 5 which suggests to be in a strong-coupling regime.Comment: 2 pages with 1 figur

    Physical properties of ferromagnetic-superconducting coexistent system

    Full text link
    We studied the nuclear relaxation rate 1/T1 of a ferromagnetic-superconducting system from the mean field model proposed in Ref.14. This model predicts the existence of a set of gapless excitations in the energy spectrum which will affect the properties studied here, such as the density of states and, hence, 1/T1. The study of the temperature variation of 1/T1(for T<Tc) shows that the usual Hebel-Slichter peak exists, but will be reduced because of the dominant role of the gapless fermions and the background magnetic behavior. We have also presented the temperature dependence of ultrasonic attenuation and the frequency dependence of electromagnetic absorption within this model. We are successful in explaining certain experimental results.Comment: 10 Pages, 9 figute

    Linking satellite derived LAI patterns with subsoil heterogeneity using large-scale ground-based electromagnetic induction measurements

    Get PDF
    Patterns in crop development and yield are often directly related to lateral and vertical changes in soil texture causing changes in available water and resource supply for plant growth, especially under dry conditions. Relict geomorphologic features, such as old river channels covered by shallow sediments can challenge assumptions of uniformity in precision agriculture, subsurface hydrology, and crop modeling. Hence a better detection of these subsurface structures is of great interest. In this study, the origins of narrow and undulating leaf area index (LAI) patterns showing better crop performance in large scale multi-temporal satellite imagery were for the first time interpreted by proximal soil sensor data. A multi-receiver electromagnetic induction (EMI) sensor measuring soil apparent electrical conductivity (ECa) for six depths of exploration (DOE) ranging from 0–0.25 to 0–1.9 m was used as reconnaissance soil survey tool in combination with selected electrical resistivity tomography (ERT) transects, and ground truth texture data to investigate lateral and vertical changes of soil properties at ten arable fields. The moderate to excellent spatial consistency (R2 0.19–0.82) of ECa patterns and LAI crop marks that indicate a higher water storage capacity as well as the increased correlations between large-offset ECa data and the subsoil clay content and soil profile depth, implies that along this buried paleo-river structure the subsoil is mainly responsible for better crop development in drought periods. Furthermore, observed stagnant water in the subsoil indicates that this paleo-river structure still plays an important role in subsurface hydrology. These insights should be considered and implemented in local hydrological as well as crop models

    Superconductivity and Spin Fluctuations in the Electron-Doped Infinitely-Layered High Tc Superconductor Sr0.9_0.9La0.1_0.1CuO2_2 (Tc=42K)

    Full text link
    This paper describes the first 63-Cu NMR study of an electron-doped infinitely-layered high Tc superconductor Sr0.9_0.9La0.1_0.1CuO2_2 (Tc=42K). The spin dynamics in the normal state above Tc exhibits qualitatively the same behavior as some hole-doped materials with significantly enhanced spin fluctuations. Below Tc, we observed no signature of a Hebel-Slichter coherence peak, suggesting an unconventional nature of the symmetry of the superconducting order parameter.Comment: Invited Paper to SNS-95 Conference (Spectroscopies on Novel Superconductors 1995 at Stanford). Also presented at Aspen Winter Conference on Superconductivity and Grenoble M^2S-HTSC in 199

    Fermi-liquid ground state in n-type copper-oxide superconductor Pr0.91Ce0.09LaCuO4-y

    Full text link
    We report nuclear magnetic resonance studies on the low-doped n-type copper-oxide Pr_{0.91}LaCe_{0.09}CuO_{4-y} (T_c=24 K) in the superconducting state and in the normal state uncovered by the application of a strong magnetic field. We find that when the superconductivity is removed, the underlying ground state is the Fermi liquid state. This result is at variance with that inferred from previous thermal conductivity measurement and contrast with that in p-type copper-oxides with a similar doping level where high-T_c superconductivity sets in within the pseudogap phase. The data in the superconducting state are consistent with the line-nodes gap model.Comment: version to appear in Phys. Rev. Let

    Magnetic and superconducting properties of Cd2Re2O7: Cd NMR and Re NQR

    Full text link
    We report Cd NMR and Re NQR studies on Cd2Re2O7, the first superconductor among pyrochlore oxides Tc=1 K. Re NQR spectrum at zero magnetic field below 100 K rules out any magnetic or charge order. The spin-lattice relaxation rate below Tc exhibits a pronounced coherence peak and behaves within the weak-coupling BCS theory with nearly isotropic energy gap. Cd NMR results point to moderate ferromagnetic enhancement at high temperatures followed by rapid decrease of the density of states below the structural transition temperature of 200 K.Comment: 4 pages, 4 figure

    Possible Multiple Gap Superconductivity with Line Nodes in Heavily Hole-Doped Superconductor KFe2As2 Studied by 75As-NQR and Specific Heat

    Full text link
    We report the 75As nuclear quadrupole resonance (NQR) and specific heat measurements of the heavily hole-doped superconductor KFe2As2 (Tc = 3.5 K). The spin-lattice relaxation rate 1/T1 in the superconducting state exhibits quite gradual temperature dependence with no coherence peak below Tc. The quasi-particle specific heat C_QP/T shows small specific heat jump which is about 30% of electronic specific heat coefficient just below Tc. In addition, it suggests the existence of low-energy quasi-particle excitation at the lowest measurement temperature T = 0.4 K \simeq Tc/10. These temperature dependence of 1/T1 and C_QP/T can be explained by multiple nodal superconducting gap scenario rather than multiple fully-gapped s_\pm-wave one within simple gap analysis.Comment: 5 pages, 5 figures, to be published in J. Phys. Soc. Jpn. No.8 issue (2009

    Coherence effect in a two-band superconductor: Application to iron pnictides

    Full text link
    From a theoretical point of view, we propose an experimental method to determine the pairing symmetry of iron pnictides. We focus on two kinds of pairing symmetries, s+−s_{+-} and s++s_{++}, which are strong candidates for the pairing symmetry of iron pnictides. For each of these two symmetries, we calculate both the density and spin response functions by using the two-band BCS model within the one-loop approximation. As a result, a clear difference is found between the s+−s_{+-}- and s++s_{++}-wave states in the temperature dependence of the response functions at nesting vector Q\bf{Q}, which connects the hole and electron Fermi surfaces. We point out that this difference comes from the coherence effect in the two-band superconductor. We suggest that the pairing symmetry could be clarified by observing the temperature dependence of both the density and spin structure factors at the nesting vector Q\bf{Q} in neutron scattering measurements.Comment: 15 pages, 7 figures, 1 tabl

    A spheroid toxicity assay using magnetic 3D bioprinting and real-time mobile device-based imaging

    Get PDF
    An ongoing challenge in biomedical research is the search for simple, yet robust assays using 3D cell cultures for toxicity screening. This study addresses that challenge with a novel spheroid assay, wherein spheroids, formed by magnetic 3D bioprinting, contract immediately as cells rearrange and compact the spheroid in relation to viability and cytoskeletal organization. Thus, spheroid size can be used as a simple metric for toxicity. The goal of this study was to validate spheroid contraction as a cytotoxic endpoint using 3T3 fibroblasts in response to 5 toxic compounds (all-trans retinoic acid, dexamethasone, doxorubicin, 5′-fluorouracil, forskolin), sodium dodecyl sulfate (+control), and penicillin-G (−control). Real-time imaging was performed with a mobile device to increase throughput and efficiency. All compounds but penicillin-G significantly slowed contraction in a dose-dependent manner (Z’ = 0.88). Cells in 3D were more resistant to toxicity than cells in 2D, whose toxicity was measured by the MTT assay. Fluorescent staining and gene expression profiling of spheroids confirmed these findings. The results of this study validate spheroid contraction within this assay as an easy, biologically relevant endpoint for high-throughput compound screening in representative 3D environments
    • …
    corecore