6,899 research outputs found

    Effects of electrode surface roughness on motional heating of trapped ions

    Get PDF
    Electric field noise is a major source of motional heating in trapped ion quantum computation. While the influence of trap electrode geometries on electric field noise has been studied in patch potential and surface adsorbate models, only smooth surfaces are accounted for by current theory. The effects of roughness, a ubiquitous feature of surface electrodes, are poorly understood. We investigate its impact on electric field noise by deriving a rough-surface Green's function and evaluating its effects on adsorbate-surface binding energies. At cryogenic temperatures, heating rate contributions from adsorbates are predicted to exhibit an exponential sensitivity to local surface curvature, leading to either a large net enhancement or suppression over smooth surfaces. For typical experimental parameters, orders-of-magnitude variations in total heating rates can occur depending on the spatial distribution of absorbates. Through careful engineering of electrode surface profiles, our results suggests that heating rates can be tuned over orders of magnitudes.Comment: 12 pages, 5 figure

    Deposition and transport of graphene oxide in saturated and unsaturated porous media

    Get PDF
    In this work, sand and bubble column experiments were conducted to explore the deposition mechanisms of graphene oxide (GO) particles in porous media with various combinations of moisture content and ionic strength. Sand column experimental results indicated that retention and transport of GO in porous media were strongly dependent on solution ionic strength. Particularly, GO showed high mobility under low ionic strength conditions in both saturated and unsaturated porous media. Increasing ionic strength dramatically increased the retention of GO particles in porous media, mainly through secondary-minimum deposition as indicated in the XDLVO interaction energy profiles. Recovery rates of GO in unsaturated sand columns were lower than that in saturated columns under the same ionic strength conditions, suggesting moisture content also played an important role in the retention of GO in porous media. Findings from the bubble column experiments showed that the GO did not attach to the air–water interface, which is consistent with the XDLVO predictions. Additional retention mechanisms, such as film straining, thus could be responsible to the reduced mobility of GO in unsaturated porous media. The experimental data of GO transport through saturated and unsaturated porous media could be accurately simulated by an advection–dispersion-reaction model

    Interaction induced ferro-electricity in the rotational states of polar molecules

    Full text link
    We show that a ferro-electric quantum phase transition can be driven by the dipolar interaction of polar molecules in the presence a micro-wave field. The obtained ferro-electricity crucially depends on the harmonic confinement potential, and the resulting dipole moment persists even when the external field is turned off adiabatically. The transition is shown to be second order for fermions and for bosons of a smaller permanent dipole moment, but is first order for bosons of a larger moment. Our results suggest the possibility of manipulating the microscopic rotational state of polar molecules by tuning the trap's aspect ratio (and other mesoscopic parameters), even though the later's energy scale is smaller than the former's by six orders of magnitude.Comment: 4 pages and 4 figure

    Sparse meta-analysis with high-dimensional data

    Get PDF
    Meta-analysis plays an important role in summarizing and synthesizing scientific evidence derived from multiple studies. With high-dimensional data, the incorporation of variable selection into meta-analysis improves model interpretation and prediction. Existing variable selection methods require direct access to raw data, which may not be available in practical situations. We propose a new approach, sparse meta-analysis (SMA), in which variable selection for meta-analysis is based solely on summary statistics and the effect sizes of each covariate are allowed to vary among studies. We show that the SMA enjoys the oracle property if the estimated covariance matrix of the parameter estimators from each study is available. We also show that our approach achieves selection consistency and estimation consistency even when summary statistics include only the variance estimators or no variance/covariance information at all. Simulation studies and applications to high-throughput genomics studies demonstrate the usefulness of our approach

    An Inhibitory Role for the Transcription Factor Stat3 in Controlling IL-4 and Bcl6 Expression in Follicular Helper T cells

    Get PDF
    The transcription factor Bcl6 is required for the development of the follicular helper T (TFH) cells. Cytokines that activate Stat3 promote Bcl6 expression and TFH cell differentiation. Previous studies with an acute virus infection model showed that TFH cell differentiation was decreased but not blocked in the absence of Stat3. In this study, we further analyzed the role of Stat3 in TFH cells. In Peyer’s patches (PPs), we found that compared to wild-type, Stat3-deficient TFH cells developed at a 25% lower rate, and expressed increased IFNγ and IL-4. While PP germinal center B (GCB) cells developed at normal numbers with Stat3-deficient TFH cells, IgG1 class switching was greatly increased. Following immunization with Sheep Red Blood Cells (SRBC), splenic Stat3-deficient TFH cells developed at a slower rate than in control mice and splenic GCB cells were markedly decreased. Stat3-deficient TFH cells developed poorly in a competitive bone marrow chimera environment. Under all conditions tested, Stat3-deficient TFH cells over-expressed both IL-4 and Bcl6, a pattern specific for the TFH cell population. Finally, we found in vitro that repression of IL-4 expression in CD4 T cells by Bcl6 required Stat3 function. Our data indicate that Stat3 can repress the expression of Bcl6 and IL-4 in TFH cells, and that Stat3 regulates the ability of Bcl6 to repress target genes. Overall, we conclude that Stat3 is required to fine-tune the expression of multiple key genes in TFH cells, and that the specific immune environment determines the function of Stat3 in TFH cells

    Testing mechanisms of compensatory fitness of dioecy in a cosexual world

    Get PDF
    Questions: All else being equal, populations of dioecious species with a 50:50 sex ratio have only half the effective reproductive population size of bisexual species of equal abundance. Consequently, there is a need to explain how dioecious and bisexual species coexist. Increased mean individual seed mass, fecundity, and population density have all been proposed as attributes of unisexual individuals or populations that may contribute to the persistence or resilience of dioecious species. To date, no studies have compared sympatric dioecious and cosexual species with respect to all three components of fitness. In this study, we sought evidence for these compensatory advantages (higher seed mass, greater seed production per unit basal area, and higher population density) in dioecious species. Location: Five 20–25 ha forest dynamic plots spanning a latitudinal gradient in China, including two temperate, two subtropical, and one tropical forest. Methods: We used a phylogenetically corrected generalized linear modelling approach to assess the phylogenetic dependence and joint evolution of sexual system, seed mass and production, and ecological abundances among 48–333 species and 32,568–136,237 individuals per forest. Results: Across all five forests, we detected no consistent advantage for dioecious relative to sympatric cosexual species with respect to mean individual seed mass, seed production or the density of stems in any size class. Conclusions: Our study suggests that seed traits may provide compensatory mechanisms in some forests, but most often the coexistence of sexual systems cannot be explained by advantages of dioecy related to seed quality and demographic parameters. Future investigations of the factors that promote coexistence may increase our understanding by expanding the search to include attributes such as lifespan and tolerance or resistance to herbivores

    Entanglement transition in rod packings

    Full text link
    Random packings of stiff rods are self-supporting mechanical structures stabilized by long range interactions induced by contacts. To understand the geometrical and topological complexity of the packings, we deploy X-ray computerized tomography to unveil the structure of the packing. This allows us to define and directly visualize the spatial variations in the entanglement, a mesoscopic field that characterizes the local average crossing number, a measure of the topological complexity of the packing. We show that the entanglement field has information that is distinct from the density, orientational order, and contact distribution of the packing. We find that increasing the aspect ratio of the constituent rods in a packing leads to a proliferation of regions of strong entanglement that eventually percolate through the system, and this is correlated with a sharp transition in the mechanical response of the packing. We conclude with a tentative entanglement phase diagram for the mechanical response of dense rod packings that is likely relevant for a broad range of problems that goes beyond our specific study

    Effects of force load, muscle fatigue and extremely low frequency magnetic stimulation on EEG signals during side arm lateral raise task

    Get PDF
    Objective: This study was to quantitatively investigate the effects of force load, muscle fatigue and extremely low frequency (ELF) magnetic stimulation on electroencephalography (EEG) signal features during side arm lateral raise task. Approach: EEG signals were recorded by a BIOSEMI Active Two system with Pin-Type active-electrodes from 18 healthy subjects when they performed the right arm side lateral raise task (90° away from the body) with three different loads (0 kg, 1 kg and 3 kg; their order was randomized among the subjects) on the forearm. The arm maintained the loads until the subject felt exhausted. The first 10 s recording for each load was regarded as non-fatigue status and the last 10 s before the subject was exhausted as fatigue status. The subject was then given a 5 min resting between different loads. Two days later, the same experiment was performed on each subject except that ELF magnetic stimulation was applied to the subject's deltoid muscle during the 5 min resting period. EEG features from C3 and C4 electrodes including the power of alpha, beta and gamma and sample entropy were analyzed and compared between different loads, non-fatigue/fatigue status, and with/without ELF magnetic stimulation. Main results: The key results were associated with the change of the power of alpha band. From both C3-EEG and C4-EEG, with 1 kg and 3 kg force loads, the power of alpha band was significantly smaller than that from 0 kg for both non-fatigue and fatigue periods (all p    0.05 for all the force loads except C4-EEG with ELF simulation). The power of alpha band at fatigue status was significantly increased for both C3-EEG and C4-EEG when compared with the non-fatigue status (p    0.05, except between non-fatigue and fatigue with magnetic stimulation in gamma band of C3-EEG at 1 kg, and in the SampEn at 1 kg and 3 kg force loads from C4-EEG). Significance: Our study comprehensively quantified the effects of force, fatigue and the ELF magnetic stimulation on EEG features with difference forces, fatigue status and ELF magnetic stimulation

    Follicular regulatory T cells repress cytokine production by follicular helper T cells and optimize IgG responses in mice

    Get PDF
    Follicular helper T (Tfh) cells provide crucial help to germinal center B (GCB) cells for proper antibody production, and a specialized subset of regulatory T cells, follicular regulatory T (Tfr) cells, modulate this process. However, Tfr-cell function in the GC is not well understood. Here, we define Tfr cells as a CD4(+) Foxp3(+) CXCR5(hi) PD-1(hi) CD25(low) TIGIT(high) T-cell population. Furthermore, we have used a novel mouse model ("Bcl6FC") to delete the Bcl6 gene in Foxp3(+) T cells and thus specifically deplete Tfr cells. Following immunization, Bcl6FC mice develop normal Tfh- and GCB-cell populations. However, Bcl6FC mice produce altered antigen-specific antibody responses, with reduced titers of IgG and significantly increased IgA. Bcl6FC mice also developed IgG antibodies with significantly decreased avidity to antigen in an HIV-1 gp120 "prime-boost" vaccine model. In an autoimmune lupus model, we observed strongly elevated anti-DNA IgA titers in Bcl6FC mice. Additionally, Tfh cells from Bcl6FC mice consistently produce higher levels of Interferon-γ, IL-10 and IL-21. Loss of Tfr cells therefore leads to highly abnormal Tfh-cell and GCB-cell responses. Overall, our study has uncovered unique regulatory roles for Tfr cells in the GC response

    On the General Ericksen-Leslie System: Parodi's Relation, Well-posedness and Stability

    Full text link
    In this paper we investigate the role of Parodi's relation in the well-posedness and stability of the general Ericksen-Leslie system modeling nematic liquid crystal flows. First, we give a formal physical derivation of the Ericksen-Leslie system through an appropriate energy variational approach under Parodi's relation, in which we can distinguish the conservative/dissipative parts of the induced elastic stress. Next, we prove global well-posedness and long-time behavior of the Ericksen-Leslie system under the assumption that the viscosity μ4\mu_4 is sufficiently large. Finally, under Parodi's relation, we show the global well-posedness and Lyapunov stability for the Ericksen-Leslie system near local energy minimizers. The connection between Parodi's relation and linear stability of the Ericksen-Leslie system is also discussed
    • …
    corecore