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SUMMARY

Meta-analysis plays an important role in summarizing and synthesizing scientific evidence derived from
multiple studies. With high-dimensional data, the incorporation of variable selection into meta-analysis
improves model interpretation and prediction. Existing variable selection methods require direct access
to raw data, which may not be available in practical situations. We propose a new approach, sparse meta-
analysis (SMA), in which variable selection for meta-analysis is based solely on summary statistics and the
effect sizes of each covariate are allowed to vary among studies. We show that the SMA enjoys the oracle
property if the estimated covariance matrix of the parameter estimators from each study is available. We
also show that our approach achieves selection consistency and estimation consistency even when summary
statistics include only the variance estimators or no variance/covariance information at all. Simulation
studies and applications to high-throughput genomics studies demonstrate the usefulness of our approach.

Keywords: Fixed-effects models; Genomics studies; Oracle property; Random-effects models; Variable selection;
Within-group sparsity.

1. INTRODUCTION

Meta-analysis is commonly used in many scientific areas. By combining multiple data sources, one can
achieve higher statistical power, more accurate estimation, and greater reproducibility (Noble, 2006). There
are over 33 million entries of “meta-analysis” on Google, and the majority of meta-analysis publications
have appeared in biostatistical and medical journals.

Traditional meta-analysis methods are designed for low-dimensional datasets. For example, both the
fixed-effects model and the random-effects model (DerSimonian and Laird, 1986; Jackson and others,
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2010; Chen and others, 2012) are typically used to analyze a single covariate; the former assumes a
common value for the parameter of interest, and the latter assumes a probabilistic distribution for the
effects of the covariate among studies. Lin and Zeng (2010) extended the fixed-effects model to the case
of multiple covariates; however, their model assumes that the number of covariates is relatively small com-
pared with the sample size.

When the number of covariates becomes very large, as in gene expression studies and genome-
wide association studies (GWAS), the incorporation of variable selection into meta-analysis improves
model interpretation, reduces prediction errors, and provides better prioritization of genomic features
for follow-up studies. When raw data are available, existing variable selection methods, such as LASSO
(Tibshirani, 1996) and adaptive-LASSO (aLASSO) (Zou, 2006), can be applied to each study, and the
selection results can be combined. Other strategies that seek to borrow information that is shared among
the studies have also been proposed (Liu and others, 2011; Ma and others, 2011; Chen and Wang, 2013;
Tenenhaus and others, 2014).

In practice, raw data are often unavailable because of high cost, logistical difficulties, time constraints,
IRB restrictions, and other study policies. Taking GWAS as an example, virtually all meta-analyses to
date have been conducted at the summary-statistics level rather than the raw-data level (Lango and others,
2010; Liu and others, 2014). The emergence of big data, such as next-generation sequencing data, makes
the collation of raw data even more challenging. A question naturally arises as to whether it is possible
to conduct effective variable selection using only summary statistics. In addition, it is unclear how to
extract information shared by different studies while allowing heterogeneity among studies. Furthermore,
the high-dimensional nature of “-omics” studies makes information extraction and model building highly
challenging.

In this article, we propose a new approach, sparse meta-analysis (SMA), in which variable selection for
meta-analysis is based solely on summary statistics. To our knowledge, no such method exists in the liter-
ature. We show that the SMA estimator is as efficient as using raw data if the estimated covariance matrix
of the parameter estimators from each study is available; our approach can achieve selection consistency
and estimation consistency even when the summary statistics include only the variance estimators or no
variance/covariance information at all.

The SMA can handle both homogeneous and heterogeneous structures of covariate effects; see Figure 1.
The former assumes that the effects of each covariate are either all zero or all non-zero across studies,
whereas the latter allows the effects of each covariate to be partly zero among studies. Biological evidence
shows that genetic variants may exhibit on/off effects due to genetic modifiers, environmental exposures,
or epigenetic mechanisms (Zeisel, 2007). Other sources of heterogeneity include differences in the study
design, ethnic group, and experimental platform.

The rest of this article is organized as follows. In Section 2, we describe the SMA approach and its vari-
ations that are designed to adapt to different practical situations. We also show that the SMA has desirable
theoretical properties. In Section 3, we use extensive simulation studies to demonstrate the superiority of
the SMA to alternative approaches. In Section 4, we illustrate the effectiveness of the SMA by perform-
ing meta-analysis of multiple GWAS studies on cardiovascular disease. In Section 5, we discuss possible
directions for future research.

2. METHODS

2.1 Data and models

Suppose that there are K independent studies, with nk subjects in the kth study. The raw data consist of
(yik, xik), k = 1, . . . , K ; i = 1, . . . , nk , where yik is the response for the i th subject in the kth study, and xik
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Fig. 1. True models under homogeneous and heterogeneous structures. Each block contains five covariates, and the
omitted blocks do not harbor any important covariates. In the first structure, a covariate needs to be active (or inactive)
in all of the studies, whereas in the second structure, a covariate can be partly active among the studies.

is the corresponding p-vector of covariates. We assume that the data for the kth study are generated from
a generalized linear model with the p-dimensional vector of regression coefficients β0

k ≡ (β0
1k, . . . , β

0
pk)

T.
We divide the covariates into two disjoint sets: the important set I = { j = 1, . . . , p : β0

jk �= 0 for some k},
and the unimportant set U = { j = 1, . . . , p : β0

jk = 0 for all k = 1, . . . , K }. Our major goals are to identify
the set I correctly and to estimate the effects of the covariates in I .

In meta-analysis, the available information pertains to the estimators β̃k (k = 1, . . . , K ), where β̃k is
typically the minimizer of some loss function. Often, the variance estimators for individual regression
coefficients are also available. In prospectively designed meta-analysis, it is possible to obtain the estimated
covariance matrix Ṽ k ≡ Ĉov(β̃k) (k = 1, . . . , K ). Traditional meta-analysis focuses on one covariate at
a time. To jointly analyze several covariates, Lin and Zeng (2010) suggested a multivariate version of

the well-known inverse-variance estimator (
∑K

k=1 Ṽ
−1
k )−1(Ṽ

−1
k β̃k), which is essentially the minimizer of∑K

k=1(β̃k − βk)
TṼ

−1
k (β̃k − βk) under the constraint that β1 = · · · = βK . Motivated by this estimator, we

propose an approach to perform variable selection in meta-analysis when raw data are not available.
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2.2 SMA estimators

We now introduce the SMA approach to variable selection and effect estimation based on summary
statistics alone. We allow the K sets of summary statistics to be derived from different (but overlapping)
subsets of the p covariates, such that the dimensions of the β̃k’s may be different (likewise for the Ṽ k’s).
For j = 1, . . . , p, let S j denote the set of studies which contain the j th covariate in the summary statistics.
In this section, we consider the situation where the covariance matrix estimator Ṽ k is available, say, in a
meta-analysis consortium. In Section 2.3, we deal with the cases where the covariance information is not
available.

The form of the estimator depends on the structure of the important set I :

(1) Homogeneous structure: for any j ∈ I , β0
jk |= 0 for all k = 1, . . . , K ; and

(2) Heterogeneous structure: for any j ∈ I , β0
jk |= 0 for at least one k.

The homogeneous structure requires each covariate in I to be active in all K studies, whereas the hetero-
geneous structure allows each covariate in I to be partly active among the K studies. The former structure
can be viewed as a special case of the latter. If we treat the regression coefficients for a covariate in the K
studies as a group, then the homogeneous structure assumes sparsity only at the group level, whereas the
heterogeneous structure allows additional sparsity at the study level within groups.

For the heterogeneous structure, we propose to minimize the following objective function with respect
to β ≡ (βT

1 , . . . ,βT
K )T

Qn(β1, . . . ,βK ) ≡
K∑

k=1

(β̃k − βk)
TṼ

−1
k (β̃k − βk) + λ

p∑
j=1

⎛
⎝∑

k∈S j

w jk |β jk |
⎞
⎠

1/2

, (2.1)

where λ is a tuning parameter, and w jk is a user-specified penalty weight for |β jk |. If λ = 0 and all of
the βk are equal, then the minimizer of (2.1) reduces to the aforementioned multivariate inverse-variance
estimator (Lin and Zeng, 2010). Our model also has a natural connection with the approach proposed by
Wang and Leng (2007), in which the least-square approximation is applied to the original loss function
and the applicability of the LASSO penalty is expanded to include various model settings. The form of
the penalty term in (2.1) was proposed by Zhou and Zhu (2010) in the context of gene-set analysis for a

single dataset. In practice, w jk can be chosen to be |β̃ jk |−1. We denote β̂ ≡ (β̂
T

1 , . . . , β̂
T

K )T as the mini-
mizer of (2.1).

REMARK 1 Although (2.1) allows heterogeneity between studies, it is different from performing separate
variable selection in individual studies. If we replace the second term in (2.1) by λ

∑p
j=1

∑
k∈S j

w jk |β jk |,
then there will be separate variable selection in each study. In contrast, the second term in (2.1) is
λ(

∑
k∈S j

w jk |β jk |)1/2, which treats β jk (k = 1, . . . , K ) as a group for each j and conducts a group-type
selection (with weights).

For the homogeneous structure, we propose to use a common penalty weight for all of the coefficients
associated with a given covariate. That is, we minimize

Q∗
n(β1, . . . ,βK ) ≡

K∑
k=1

(β̃k − βk)
TṼ

−1
k (β̃k − βk) + λ

p∑
j=1

⎛
⎝∑

k∈S j

w j |β jk |
⎞
⎠

1/2

, (2.2)
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where w j = (
∑

k∈S j
|β̃ jk |/KS j )

−1 for j = 1, . . . , p, where KS j is the cardinality of S j . The choice of w j

(and w jk) is in a similar spirit to the adaptive LASSO, with stronger predictors receiving less penalty. Note
that w j is the weight for the penalty term, while Ṽ k serves as the weight for the traditional (un-penalized)

meta-analysis. Let β̂
∗

denote the minimizer of (2.2).

REMARK 2 By the construction of the weight w j , the penalty in (2.2) borrows the strength from the studies
with strong signals for the j th variable to protect the weak signals, such that β jk (k = 1, . . . , K ) tend to be
selected or removed simultaneously. Due to the use of the L1 norm inside the penalty, it is possible for very
small coefficients to be penalized to 0. However, this has little impact on the utility of the selected model
since very small effects contribute little to prediction. We can strictly enforce the all-in/all-out structure
by replacing the L1 norm in (2.2) with the L2 norm, although the small estimates induced by the L2 norm
may not be desirable.

2.3 SMA estimators with working covariance matrices

In practice, one may only have access to the diagonal elements of Ṽ k , i.e., V̂ar(β̃ jk) ( j = 1, . . . , p), for
k = 1, . . . , K . In that case, we extend the SMA to accommodate the working covariance matrix Ĉk ≡
diag{V̂ar(β̃1k), . . . , V̂ar(β̃pk)}. In particular, for the heterogeneous structure, we minimize

K∑
k=1

(β̃k − βk)
TĈ

−1
k (β̃k − βk) + λ

p∑
j=1

⎛
⎝∑

k∈S j

w jk |β jk |
⎞
⎠

1/2

. (2.3)

We call the solution to (2.3) the SMA-Diag estimator. In some applications, even V̂ar(β̃ jk) may not be
available. Then we replace Ṽ k with the p × p matrix D̂k ≡ diag{1/nk, . . . , 1/nk} and minimize

K∑
k=1

(β̃k − βk)
TD̂

−1
k (β̃k − βk) + λ

p∑
j=1

⎛
⎝∑

k∈S j

w jk |β jk |
⎞
⎠

1/2

. (2.4)

We name the solution to (2.4) the SMA-S estimator. The SMA-Diag and SMA-S for the homogeneous
structures can be obtained in a similar manner.

The covariance matrix Ṽ k is primarily determined by the correlations of the covariates (Hu and others,
2013). The correlations can be estimated from one of the participating studies or from an external panel,
such as the Hapmap or the 1000 Genomes data in genomic studies. Thus, when only the diagonal elements
of the Ṽ k are available, one can utilize the correlation matrix from an internal or external source to recover
the Ṽ k . The corresponding versions of the SMA are called the SMA-I and SMA-E, respectively. If the Ṽ k’s
are neither available nor recoverable, then the SMA-Diag may be the only viable tool.

2.4 Algorithms and tuning

We focus on the optimization algorithm to solve (2.1), as the minimizations of (2.2)–(2.4) can be carried
out in similar manners. Note that the objective function in (2.1) is not convex in β and has a complex
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nonlinear form. First, we derive the following simpler yet equivalent version for the problem

min
β,γ

K∑
k=1

(β̃k − βk)
TṼ

−1
k (β̃k − βk) + λ1

p∑
j=1

γ j +
p∑

j=1

γ −1
j

⎛
⎝∑

k∈S j

w jk |β jk |
⎞
⎠ ,

subject to γ = (γ1, . . . , γp) � 0,

(2.5)

where λ1 > 0 is a tuning parameter. The proof for the equivalence of (2.1) and (2.5) is given in supplemen-
tary material. There is a one-to-one correspondence between λ and λ1. We propose an iterative algorithm
to alternately minimize (2.5) with respect to β (or γ ), with γ (or β) being fixed at their current values.
When β is fixed, we obtain a closed-form solution for γ . When γ is fixed, the minimization problem can
be transformed into an adaptive-LASSO problem and solved by the cyclic coordinate descent algorithm
(Friedman and others, 2007).

Algorithm:

• Step 1: Initialize β̂
(0)

k by the estimates β̃k for all k. Set m = 1.

• Step 2: Fix β̂
(m−1)

k (k = 1, . . . , K ) at their current values and minimize (2.5) with respect to γ . The
solution is γ̂

(m)
j ≡ (

∑
k∈S j

w jk |β̂(m−1)
jk |)1/2λ

−1/2
1 , j = 1, . . . , p.

• Step 3: Fix γ̂
(m)
j ( j = 1, . . . , p) at their current values and minimize (2.5) with respect to β. Denote

the solution as β̂
(m)

k , k = 1, . . . , K .

• Step 4: Let m = m + 1, and go to Step 2 until convergence.

The above algorithm clearly shows that the SMA involves a dynamic thresholding process rather than
a simple thresholding procedure. The tuning parameter λ controls the trade-off between model sparsity
and model fit. Motivated by the work of Wang and Leng (2007), we determine the tuning parameter by a
modified information criterion (MIC). Define SSEλ = ∑K

k=1(β̂k,λ − β̃k)
T(β̂k,λ − β̃k), where β̂k,λ is the

estimate of β0
k under λ. Let qλ,k be the number of nonzero components of β̂k,λ. Then, the MIC is defined as

MICλ = SSEλ +
K∑

k=1

(qλ,k log nk/nk).

The first part of MICλ measures the overall model fit for the K studies, whereas the second part measures
the model complexity among the K studies. It can be shown that the proposed MIC is consistent for model
selection (see Section A of supplementary material available at Biostatistics online). When Ṽ k is available,

we can redefine the SSEλ by
∑K

k=1(β̂k,λ − β̃k)
T(Ṽ

−1
k /nk)(β̂k,λ − β̃k) to accommodate variance estimates

in the MIC.

2.5 Asymptotic properties

We study the asymptotic properties of the SMA estimators in terms of selection and estimation. We show in
Section A of supplementary material available at Biostatistics online that, for arbitrary covariance matrices
Rk (k = 1, . . . , K ), the SMA can achieve both selection consistency and estimation consistency; when
Rk = Ṽ k , the SMA estimator has the oracle property in that it is asymptotically normal and efficient.

http://biostatistics.oxfordjournals.org/lookup/suppl/doi:10.1093/biostatistics/kxv038
http://biostatistics.oxfordjournals.org/lookup/suppl/doi:10.1093/biostatistics/kxv038
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3. NUMERICAL STUDIES

We conducted extensive simulation studies to evaluate the empirical performance of the SMA approach
under various scenarios. Specifically, we compared the following methods: (i) the method that utilizes the
raw data along with a group penalty, which we call the Raw method; (ii) the SMA; (iii) the SMA-derived
methods (i.e., SMA-Diag, SMA-S, SMA-I, and SMA-E); (iv) the aLASSO-U method, which first applies
the adaptive-LASSO to each of the K studies to obtain K models and then takes the union of the K models
as the final model; (v) the aLASSO-I method, which is the same as the aLASSO-U except that it takes the
intersection of the K models; (vi) the Hard-Thresholding-Union (HT-U) method, which is similar to the
aLASSO-U but replaces the aLASSO by hard-thresholding; and (vii) the Hard-Thresholding-Intersection
(HT-I) method, which is similar to the aLASSO-I but replaces the aLASSO by hard-thresholding. Methods
(iv)–(vii) represent two natural ways of combining variable selection results obtained from individual
studies.

To measure the performance of each method, we calculated the estimated model sparsity, defined as∑K
k=1 |M̂(k)|, where M̂(k) denotes the set of selected covariates for the kth study. We further calculated the

correct 0 rate M−1
∑M

m=1 π̂m and the incorrect 0 rate M−1
∑M

m=1 ζ̂m , where π̂m = ∑K
k=1

∑p
j=1 I (β̂ jk =

0)I (β0
jk = 0)/

∑K
k=1

∑p
j=1 I (β0

jk = 0), ζ̂m = ∑K
k=1

∑p
j=1 I (β̂ jk = 0)I (β0

jk |= 0)/
∑K

k=1

∑p
j=1 I (β0

jk |= 0)

for the mth simulation, I (·) is the indicator function, and M is the total number of simulations. Sim-
ilar criteria were used by Wang (2009). We generated the data from linear regression models and set
M = 100. To assess the prediction accuracy, we further simulated K datasets, (ỹik, x̃ik) for k = 1, . . . , K
and i = 1, . . . , nk , and calculated the prediction error K −1

∑K
k=1{n−1

k

∑nk
i=1(ỹik − x̃T

ik β̂k)
2}. We considered

small p, large p, and “p > n,” as well as several other practical situations.

3.1 Small dimensions

We first considered the situation with a small number of covariates. We simulated five studies, each with 50
covariates. The sample sizes for the five studies were 1500, 1400, 1300, 1200, and 1100. The 50 covariates
were evenly divided into 10 blocks. To simulate single nucleotide polymorphisms (SNPs), we adopted a
simulation scheme in line with Wu and others (2009). For each block, we first simulated a multivariate
normal distribution, with mean being the unit vector and covariance matrix following either the compound
symmetry or the auto-regressive correlation structure with correlation coefficient ρ; we then trichotomized
each covariate into (0, 1, 2) to represent an SNP. For the SMA-I, we used the correlations of the SNPs from
the largest study (i.e., the first study) to recover the Ṽ k ; for the SMA-E, we simulated an external panel
with 500 subjects.

We first focused on the homogeneous structure, in which five studies share 10 active SNPs (see Figure 1,
upper panel). For j = 1, . . . , p, the nonzero coefficients for the j th SNP were simulated under the random-
effects model, with the values of the coefficients following the (−1) j × N (0.5, 0.252) distribution. The
coefficients fluctuate primarily between 0 and 1 or between −1 and 0. The variance explained by individual
SNPs fluctuates around 6% and is <1% for 14% of the SNPs (under the auto-regressive structure with
ρ = 0.6). All SNP genotypes were standardized before variable selection.

As shown in Table 1, the performance of the SMA is comparable with that of the Raw method. This
is consistent with our theoretical results that the two methods are asymptotically equivalent. The SMA-
Diag and SMA-S appear to have reasonable performance, although they are less efficient than the SMA
because of the loss of information on the estimated covariance matrix. Both the SMA-I and SMA-E work
nearly as well as the SMA. The aLASSO-U and HT-U clearly over-select models, and their parameter
estimation errors are always higher than those of the SMA and SMA-derived methods. The prediction
errors for the first six methods are close to each other, and the SMA tends to perform slightly better than the
aLASSO-U and HT-U. The aLASSO-I and HT-I always under-select models, resulting in grossly inflated
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Table 1. Comparison of the SMA with other methods under the homogeneous structure
for p = 50

Method
∑5

k=1 |M̂(k)| Correct 0 (%) Incorrect 0 (%) ‖β̂ − β0‖2/5 Prediction error

Correlation structure: auto-regressive (ρ = 0.3)
Raw 49.64 99.9 1.0 0.017 1.009
SMA 49.63 99.9 1.0 0.017 1.009
SMA-Diag 49.76 99.9 1.0 0.019 1.010
SMA-S 49.73 99.9 1.1 0.019 1.010
SMA-I 49.65 99.9 1.0 0.018 1.009
SMA-E 49.73 99.9 1.0 0.019 1.010
aLASSO-U 164.55 42.7 0 0.032 1.016
aLASSO-I 43.55 100.0 12.9 0.343 1.415
HT-U 91.00 79.5 0 0.037 1.019
HT-I 40.8 100.0 18.4 0.488 1.680

Correlation structure: auto-regressive (ρ = 0.6)
Raw 49.72 99.9 1.0 0.017 1.009
SMA 49.71 99.9 1.0 0.017 1.009
SMA-Diag 50.88 99.4 0.5 0.025 1.013
SMA-S 51.15 99.3 0.5 0.025 1.013
SMA-I 49.81 99.9 0.8 0.018 1.009
SMA-E 49.85 99.8 1.0 0.019 1.010
aLASSO-U 163.25 43.4 0 0.036 1.016
aLASSO-I 43.35 100.0 13.3 0.350 1.443
HT-U 116.85 66.6 0 0.061 1.026
HT-I 40.10 100.0 19.8 0.513 1.713

Correlation structure: compound symmetry (ρ = 0.3)
Raw 49.83 99.9 0.7 0.017 1.009
SMA 49.83 99.9 0.7 0.017 1.009
SMA-Diag 49.86 99.9 0.8 0.020 1.010
SMA-S 49.97 99.8 0.8 0.020 1.010
SMA-I 49.78 99.9 0.7 0.018 1.009
SMA-E 49.90 99.9 0.8 0.019 1.010
aLASSO-U 169.05 40.5 0 0.033 1.016
aLASSO-I 43.15 100.0 13.7 0.365 1.509
HT-U 91.15 79.4 0 0.038 1.019
HT-I 40.4 100.0 19.2 0.506 1.707

Correlation structure: compound symmetry (ρ = 0.5)
Raw 49.63 99.9 1.0 0.019 1.009
SMA 49.73 99.9 1.0 0.019 1.009
SMA-Diag 50.35 99.6 1.0 0.025 1.012
SMA-S 50.36 99.6 0.9 0.025 1.012
SMA-I 49.84 99.9 0.8 0.020 1.009
SMA-E 49.85 99.8 0.9 0.021 1.010
aLASSO-U 168.55 40.7 0 0.040 1.016
aLASSO-I 42.75 100.0 14.5 0.390 1.487
HT-U 113.2 68.4 0 0.057 1.025
HT-I 39.75 100.0 20.5 0.557 1.732
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estimation errors and prediction errors. The results for the heterogeneous structure show similar patterns
(see Table S1a of supplementary material available at Biostatistics online). Indeed, under the heterogeneous
structure, the aLASSO-I and HT-I are bound to fail by their design.

3.2 Large dimensions

We increased the number of SNPs to 200 and set the sample sizes to 2000, 1900, 1800, 1900, and 2000. For
the SMA-E, we simulated an external panel of 1000 subjects. The results are shown in Table 2 and Table
S1b of supplementary material available at Biostatistics online. The SMA method continues to perform
similarly to the Raw method. In addition, the SMA is able to capture most of the important SNPs, while
maintaining a model size that is close to the true model size. The SMA-Diag and SMA-S are less efficient
than the SMA but still possess the desirable model sparsity. The SMA-I and SMA-E maintain their model
sparsity with quite accurate estimation of parameters. In contrast, the aLASSO-U and HT-U include a large
number of noise SNPs, while the aLASSO-I and HT-I tend to miss important SNPs.

3.3 p > n

When p is greater than n, variable selection in meta-analysis becomes extremely challenging. Our SMA
is based on summary statistics, but the ordinary least-squares (OLS) estimates cannot be obtained when
p > n. Under such a situation, it is necessary to reduce the dimension from an ultra-high level to a level that
is amenable to most variable selection methods. We propose to first conduct marginal screening to reduce
the dimension to be smaller than n and then obtain the summary statistics based on the reduced set of
variables. This strategy is in the same vein as the sure independence screening (SIS) of Fan and Lv (2008).
Because the SIS theory ensures that all important variables are preserved after the marginal screening,
the selection consistency of the SMA with marginal screening is guaranteed. We evaluated the empirical
performance in simulation studies. To have a fair comparison, the aLASSO-U, aLASSO-I, HT-U, and HT-I
were also conducted after the SIS procedure. We set the sample sizes of the five studies to 600, 500,
600, 500, and 400. The dimension p was set to 10 000. We first performed the marginal screening on
each study to reduce the dimension from p to n/(3 log(n)) and then took a union of the reduced sets of
SNPs for subsequent variable selection. As shown in Table 3, the SMA model still has a reasonable model
size, with the parameter-estimation error and the prediction error comparable with the Raw method. The
aLASSO-U, aLASSO-I, HT-U, and HT-I either lose model sparsity or miss important SNPs, thus resulting
in higher estimation errors and prediction errors, as was the case in the previous simulation studies.

3.4 Other considerations

We also addressed several other issues on sparse meta-analysis, such as a model structure different from the
homogeneous and heterogeneous structures, the influence of sparsity on variable selection, different sets
of candidate variables among studies, and the influence of screening on variable selection. The interested
readers are referred to Section B of supplementary material available at Biostatistics online.

4. REAL DATA ANALYSIS

We considered the Multi-Ethnic Study of Atherosclerosis (MESA), the Coronary Artery Risk Development
in Young Adults (CARDIA) study, the Cardiovascular Health Study (CHS), the Framingham Heart Study
(FHS), and the Atherosclerosis Risk in Communities (ARIC) study. These studies are currently focused
on the genetic factors for cardiovascular diseases.
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Table 2. Comparison of the SMA with other methods under the homogeneous structure for
p = 200

Method
∑5

k=1 |M̂(k)| Correct 0 (%) Incorrect 0 (%) ‖β̂ − β0‖2/5 Prediction error

Correlation structure: auto-regressive (ρ = 0.3)
Raw 49.75 100.0 0.8 0.010 1.006
SMA 49.76 100.0 0.8 0.011 1.006
SMA-Diag 50.31 99.9 0.8 0.013 1.008
SMA-S 50.19 99.9 0.7 0.013 1.007
SMA-I 50.26 99.9 0.7 0.013 1.007
SMA-E 51.29 99.8 0.8 0.015 1.008
aLASSO-U 531.40 49.3 0 0.040 1.021
aLASSO-I 44.25 100.0 11.5 0.311 1.441
HT-U 135.25 91.0 0 0.044 1.022
HT-I 40.65 100.0 18.7 0.496 1.649

Correlation structure: auto-regressive (ρ = 0.6)
Raw 50.11 99.9 0.7 0.011 1.006
SMA 50.00 100.0 0.8 0.011 1.006
SMA-Diag 52.81 99.7 0.5 0.018 1.010
SMA-S 52.71 99.7 0.5 0.018 1.010
SMA-I 50.21 99.9 0.7 0.013 1.007
SMA-E 51.11 99.8 0.7 0.015 1.008
aLASSO-U 537.20 48.7 0 0.044 1.020
aLASSO-I 44.60 100.0 11.0 0.308 1.415
HT-U 217.60 82.4 0 0.088 1.040
HT-I 40.45 100.0 19.1 0.517 1.767

Correlation structure: compound symmetry (ρ = 0.3)
Raw 50.00 100.0 0.8 0.012 1.007
SMA 49.97 100.0 0.8 0.012 1.007
SMA-Diag 50.20 99.9 0.8 0.014 1.008
SMA-S 50.17 99.9 0.8 0.014 1.008
SMA-I 50.09 99.9 0.8 0.013 1.007
SMA-E 51.06 99.9 0.5 0.016 1.008
aLASSO-U 531.35 49.3 0 0.042 1.021
aLASSO-I 44.55 100.0 11.0 0.306 1.407
HT-U 143.95 90.1 0 0.048 1.024
HT-I 40.5 100.0 19.0 0.511 1.698

Correlation structure: compound symmetry (ρ = 0.5)
Raw 49.92 100.0 0.7 0.012 1.006
SMA 49.92 100.0 0.8 0.012 1.006
SMA-Diag 51.80 99.8 0.6 0.018 1.010
SMA-S 51.96 99.8 0.6 0.018 1.010
SMA-I 50.19 99.9 0.8 0.015 1.007
SMA-E 51.68 99.8 0.7 0.017 1.008
aLASSO-U 515.00 51.1 0 0.045 1.020
aLASSO-I 43.60 100.0 12.8 0.369 1.467
HT-U 201.85 84.0 0 0.079 1.037
HT-I 40.0 100.0 20.0 0.565 1.779
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Table 3. Performance of the SMA and other methods with marginal screening under the
homogeneous structure for p > n

Method
∑5

k=1 |M̂(k)| Correct 0 (%) Incorrect 0 (%) ‖β̂ − β0‖2/5 Prediction error

Correlation structure: auto-regressive (ρ = 0.3)
Raw 56.89 98.5 0.9 0.059 1.033
SMA 61.39 97.6 0.7 0.067 1.038
SMA-I 63.34 97.1 1.0 0.143 1.073
SMA-E 58.77 98.0 1.4 0.151 1.078
aLASSO-U 504.40 6.3 0 0.363 1.183
aLASSO-I 42.25 99.7 18.6 0.556 1.865
HT-U 452.30 17.1 0 0.583 1.291
HT-I 37.95 99.9 24.7 0.727 2.246

Correlation structure: auto-regressive (ρ = 0.6)
Raw 56.80 98.4 1.3 0.065 1.037
SMA 61.30 97.5 1.0 0.073 1.041
SMA-I 61.55 97.4 1.3 0.143 1.073
SMA-E 57.22 98.2 2.1 0.150 1.075
aLASSO-U 483.15 7.9 0.2 0.362 1.179
aLASSO-I 41.25 99.7 20.2 0.601 1.928
HT-U 441.65 16.6 0.2 0.597 1.288
HT-I 37.6 99.9 25.7 0.782 2.337

Correlation structure: compound symmetry (ρ = 0.3)
Raw 57.58 98.3 1.5 0.068 1.037
SMA 63.17 97.3 1.2 0.079 1.042
SMA-I 63.91 97.1 1.7 0.168 1.081
SMA-E 57.25 98.4 2.1 0.174 1.083
aLASSO-U 522.9 6.0 0.4 0.400 1.196
aLASSO-I 41.15 99.7 20.5 0.629 2.032
HT-U 464.2 17.7 0.4 0.630 1.309
HT-I 36.55 100.0 27.2 0.818 2.435

Correlation structure: compound symmetry (ρ = 0.5)
Raw 57.23 98.3 1.9 0.084 1.041
SMA 60.98 97.5 1.9 0.090 1.044
SMA-I 61.86 97.3 2.3 0.172 1.077
SMA-E 57.06 98.3 2.4 0.176 1.078
aLASSO-U 489.35 7.7 1.0 0.394 1.187
aLASSO-I 40.95 99.7 21.4 0.644 1.901
HT-U 452.35 15.4 1.0 0.633 1.301
HT-I 37.45 99.9 25.8 0.759 2.219

Note: p = 10 000 and the sample sizes range from 400 to 600. The Correct 0 (%) and Incorrect 0 (%) were based
on the dimensions after the SIS procedure. The SMA-E used an external panel of 1000 subjects.

The FHS includes 2066 European Americans; the other four studies include both African Americans
and European Americans. Numbers of African Americans and European Americans in the MESA,
CARDIA, CHS, and ARIC are 1568 and 2249, 1261 and 1422, 717 and 3824, and 2532 and 8907, respec-
tively. We considered the two race groups separately, thus performing meta-analysis of nine studies: FHS,
MESA-A, MESA-E, CARDIA-A, CARDIA-E, CHS-A, CHS-E, ARIC-A, and ARIC-E, where “A” and
“E” denote African and European Americans, respectively. The phenotype of interest for our analysis was
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Table 4. Variable selection in seven studies (i.e., FHS, MESA-A, MESA-E, CARDIA-A, CARDIA-E,
CHS-A, and CHS-E) followed by prediction in the ARIC-A and ARIC-E studies

Model sizes

Method MESA-A CARDIA-A CHS-A MESA-E CARDIA-E CHS-E FHS Pred-error

Raw 29 37 16 33 32 26 31 2.62
SMA 29 25 26 28 20 28 25 2.63
SMA-Diag 49 52 42 52 38 44 53 2.69
SMA-S 46 56 29 49 53 42 56 2.64
SMA-I 30 22 14 25 15 27 19 2.62
SMA-E 43 39 38 57 35 51 55 2.62
aLASSO-U 258 258 258 258 258 258 258 2.84
HT-U 241 241 241 241 241 241 241 2.78

lipidpc1, which is a continuous variable derived from the principal component analysis of several fasting
serum measurements: low-density lipoprotein, high-density lipoprotein, triglycerides, apolipoprotein A1,
and apolipoprotein B; lipidpc1 was found to be associated with genetic loci implicated in obesity, athero-
geneic dyslipidemia, and glucose metabolism (Avery and others, 2011). We conducted marginal screening
(details in Section C of supplementary material available at Biostatistics online) which yielded 276 can-
didate SNPs for variable selection. The number of SNPs studied herein is in accordance with the SIS
theory, as well as practical variable selection in GWAS (Wu and others, 2009). We adjusted the values of
lipidpc1 by environmental covariates (i.e., age, gender, and study site), as well as the first 10 eigenvec-
tors from the principal component analysis of the GWAS SNPs to account for the population substructure
(Avery and others, 2011). We then applied the SMA and other methods to the adjusted lipidpc1 and the
276 SNPs.

Due to differences in the study population, especially the ethnicity, we adopted the heterogeneous struc-
ture. Because the ARIC-A and ARIC-E have appreciably larger sample sizes than the other studies, we used
the other seven studies to select important SNPs and used the ARIC-A and ARIC-E to evaluate the predic-
tion accuracy. We compared the Raw, SMA, SMA-Diag, SMA-S, SMA-I, SMA-E, aLASSO-U, and HT-U
methods. The aLASSO-I and HT-I methods were omitted because of their inherent incompatibility with
the heterogeneous structure. For the SMA-I, the MESA-A and CHS-E were used to recover the covari-
ance matrices for the “-A” group and the “-E” group, respectively. For the SMA-E, the 1000 Genomes
data were used (separately for the “-A” and “-E” groups). Table 4 shows the model sizes obtained by the
various methods, and Table 5 shows the estimated regression coefficients for some of the selected SNPs
in the SMA model. (The results for the Raw model can be found in Table S10 of supplementary mate-
rial available at Biostatistics online) For the seven studies combined, 164 of the selected SNPs overlap
between the SMA and the Raw model. By treating the Raw as the truth, we observed that the SMA’s
true-positive rate (TPR) and false-positive rate (FPR) are 0.80 and 0.01, respectively. For the SMA-Diag,
the TPR and FPR are 0.90 and 0.08, respectively. All the SMA-derived methods achieve sparse models.
In contrast, the aLASSO-U and HT-U select much larger models which are difficult to interpret. SNP
rs12982656 identified by the SMA and SMA-Diag is located in the INSR (insulin receptor) gene. This
gene was found to be associated with triglycerides by the Global Lipids Genetics Consortium (2013) in a
study of ∼188 000 subjects, which is much bigger than ours. The estimated regression coefficients vary
across different studies and sometimes shrink to zero among the seven studies. For example, rs2954021
is active only in the European Americans, and rs660240 is active in five studies. The observed pattern of
the active SNPs is consistent with the heterogeneous structure. The European American studies seem to
share more active SNPs than the African American studies, reflecting the well-known fact that the former

http://biostatistics.oxfordjournals.org/lookup/suppl/doi:10.1093/biostatistics/kxv038
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Table 5. Estimated regression coefficients for some selected SNPs in the SMA model

MESA CARDIA CHS MESA CARDIA CHS
SNP Annotation Gene -A -A -A -E -E -E FHS

rs4420638 Downstream APOC1 0.03 −0.03 −0.19 −0.26 −0.49
rs660240 3′UTR CELSR2 0.24 0.07 0.26 0.22 −0.15
rs445925 Upstream APOC1 −0.03 −0.17 −0.25 −0.32 −0.31 −0.42
rs6511720 Intron LDLR 0.16 0.23 0.16 0.20 0.28 0.38
rs964184 Downstream ZPR1 0.08 −0.24 −0.12 −0.15
rs2954021 Intron LOC105375745 0.03 0.15 0.10 0.07
rs9302635 Intron DHX38 −0.07 −0.05 −0.02 −0.10
rs7254892 Intron PVRL2 −0.49
rs13414987 Downstream APOB
rs520861 Downstream TDRD15 −0.23 −0.25 −0.04 −0.10 −0.10 −0.14
rs4803770 Downstream APOC1 −0.10 −0.16 −0.02
rs2867314 Intron LUZP1 0.09
rs1367117 Missense APOB 0.13 0.11 0.17
rs9939224 Intron CETP −0.23
rs6669785 Intron LEPR −0.13
rs4148817 Intron ABCB4 −0.10
rs38117588 Intron Ipcef1 −0.08
rs12357364 Intron RNLS 0.07
rs1544410 Upstream VDR 0.09
rs4384362 Intron PDGFD −0.16
rs1002054 Intron MAPK1IP1L −0.16
rs1470641 Intron ITPR2 −0.18 −0.07 0.20
rs3846662 Intron HMGCR −0.14 −0.05 −0.05 −0.04 −0.14
rs12982656 Intron INSR 0.03 0.17 0.08

Note: Zero estimates are left blank. Annotation is based on dbSNP (http://www.ncbi.nlm.nih.gov/snp).

population is more homogeneous than the latter. The meta-analysis of multiple studies also captures SNPs
that are (partly) missed by the individual aLASSO. For example, we observe that rs4420638 is captured
in five studies by the SMA, but only in three studies by the individual aLASSO; likewise, rs6511720 is
captured in seven studies by the SMA-Diag, but only in six studies by the individual aLASSO.

To investigate the prediction performance, we tested the SNPs selected by the eight methods on the
ARIC-A and ARIC-E. We chose the active SNPs from the CARDIA-A and CARDIA-E for prediction, as
these two studies are clinically similar to the ARIC studies and have well-balanced sample sizes for the two
race groups. We assessed the prediction accuracy by randomly dividing each of the ARIC-A and ARIC-E
into two halves, using one half to estimate the regression coefficients (via unpenalized linear regression)
and the other half to calculate the prediction error. As shown in Table 4, the SMA, the SMA-Diag, and
other SMA-derived methods achieve higher prediction accuracies than the aLASSO-U and HT-U. The
larger prediction errors of the aLASSO-U and HT-U methods are likely due to their large model sizes,
demonstrating the importance of variable selection when predicting genetic risks.

5. DISCUSSION

Variable selection in meta-analysis is important for improving model interpretability and prediction
accuracy. We have developed a class of variable selection methods—the SMA and its variations—that
require only summary statistics and thus will greatly broaden the applicability of variable selection in

http://www.ncbi.nlm.nih.gov/snp
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meta-analysis. The proposed methods are particularly useful for prospectively planned meta-analysis, in
which the participating studies coordinate with each other to report appropriate summary statistics. We
anticipate that our approach will find its applications in the forthcoming era of big data where it is imprac-
tical to collect or store all of the raw data.

Our theoretical and numerical studies demonstrate that summary statistics can replace raw data for
variable selection in meta-analysis, at least in the asymptotic sense, when full covariance matrices are
available. In a similar spirit (although not in the context of variable selection), Lin and Zeng (2010) showed
that summary statistics are asymptotically equivalent to raw data for meta-analysis under the fixed-effects
model. We conjecture that if the first part of equation (2.1) is replaced by other suitable risk functions, then
the asymptotic equivalence between summary statistics and raw data will continue to hold. If the penalty
term in equation (2.1) is replaced by other reasonable penalties, such as group LASSO and group SCAD,
then the asymptotic equivalence is also expected to hold. Which risk function or penalty term to use should
depend on the scientific nature of the problem and the modeling aims of the investigators.

Although the penalty term in (2.1) is similar to that of Zhou and Zhu (2010), our paper deals with a very
different problem. Zhou and Zhu (2010) considered group selection for a single dataset, with each group
consisting of different variables (e.g., multiple genes in one pathway). In our case, each group corresponds
to the same variable in multiple studies. The work of Zhou and Zhu (2010) requires access to raw data. In
contrast, our approach is based solely on summary statistics and can even accommodate situations where
the covariance information is not available. Because we address a different problem and work with (poten-
tially incomplete) summary statistics instead of raw data, our technical arguments and theoretical results
are somewhat different from those of Zhou and Zhu (2010). We have established the oracle property of the
SMA and the selection consistency and estimation consistency for arbitrary working covariance matrices.

We have implicitly assumed that β̃k is obtained under a multi-variable model. Published studies, how-
ever, may report regression coefficients that are estimated with one covariate in the model at a time. If
the covariates are approximately uncorrelated, then the regression coefficients from the multi-variable and
single-variable models are similar. When the covariance matrix of the covariates is available from one of
the participating studies or from an external panel, such as the Hapmap and 1000 Genomes, we can recover
the regression coefficients in the multi-variable model by adjusting the regression coefficients estimated
from the single-variable models through simple matrix multiplication.

It would be worthwhile to enhance the capability of the SMA to tackle the “p > n” situation. In this
article, we adopt the SIS theory to reduce the dimension to a manageable size and then apply the SMA
for variable selection. This strategy is practically useful and seems to work well. An alternative approach
would be to directly handle the “p > n” challenge, without implementing any pre-screening procedure.
However, such methods are still very limited, and their applications to large datasets (such as those derived
from GWAS) may be severely hindered by the excessively large number of variables. Indeed, it is still
unclear what kind of summary statistics one can/should collect for data with “p > n.”

Recently, Guan and Stephens (2011) proposed a Bayesian variable selection approach, which was
shown to be capable of detecting weak effects in GWAS. In addition, Pickrell (2014) proposed a Bayesian
hierarchical model for integrating functional genomic information with GWAS data. It would be worth-
while to extend such Bayesian methods to the setting of variable selection in meta-analysis and make a
comparison with the frequentist methods presented in this paper.

In summary, we introduce a novel approach to variable selection in meta-analysis—the SMA—that
relies on summary statistics alone. The SMA can be adapted to different practical situations. In addition,
the SMA is computationally efficient, as it works directly on summary statistics. Our sensitivity analysis
(Table S8 of supplementary material available at Biostatistics online) shows that the SMA approach is
not sensitive to data perturbation, indicating that the SMA is numerically stable. As demonstrated in our
simulated and empirical data, the SMA has excellent performance and thus provides a valuable new tool
for high-dimensional meta-analysis.
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SUPPLEMENTARY MATERIAL

Supplementary material is available at http://biostatistics.oxfordjournals.org.
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