75 research outputs found

    Micro ecosystems from feed industry surfaces: a survival and biofilm study of Salmonella versus host resident flora strains

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The presence of <it>Salmonella </it>enterica serovars in feed ingredients, products and processing facilities is a well recognized problem worldwide. In Norwegian feed factories, strict control measures are implemented to avoid establishment and spreading of <it>Salmonella </it>throughout the processing chain. There is limited knowledge on the presence and survival of the resident microflora in feed production plants. Information on interactions between <it>Salmonella </it>and other bacteria in feed production plants and how they affect survival and biofilm formation of <it>Salmonella </it>is also limited. The aim of this study was to identify resident microbiota found in feed production environments, and to compare the survival of resident flora strains and <it>Salmonella </it>to stress factors typically found in feed processing environments. Moreover, the role of dominant resident flora strains in the biofilm development of <it>Salmonella </it>was determined.</p> <p>Results</p> <p>Surface microflora characterization from two feed productions plants, by means of 16 S rDNA sequencing, revealed a wide diversity of bacteria. Survival, disinfection and biofilm formation experiments were conducted on selected dominant resident flora strains and <it>Salmonella</it>. Results showed higher survival properties by resident flora isolates for desiccation, and disinfection compared to <it>Salmonella </it>isolates. Dual-species biofilms favored <it>Salmonella </it>growth compared to <it>Salmonella </it>in mono-species biofilms, with biovolume increases of 2.8-fold and 3.2-fold in the presence of <it>Staphylococcus </it>and <it>Pseudomonas</it>, respectively.</p> <p>Conclusions</p> <p>These results offer an overview of the microflora composition found in feed industry processing environments, their survival under relevant stresses and their potential effect on biofilm formation in the presence of <it>Salmonella</it>. Eliminating the establishment of resident flora isolates in feed industry surfaces is therefore of interest for impeding conditions for <it>Salmonella </it>colonization and growth on feed industry surfaces. In-depth investigations are still needed to determine whether resident flora has a definite role in the persistence of <it>Salmonella </it>in feed processing environments.</p

    Impacts of wet market modernization levels and hygiene practices on the microbiome and microbial safety of wooden cutting boards in Hong Kong

    Get PDF
    Accessing food through wet markets is a common global daily occurrence, where fresh meat can be purchased to support an urbanizing world population. Similar to the wet markets in many other metropolitan cities in Asia, Hong Kong wet markets vary and are characterized by differing hygiene routines and access to essential modern technologies. The lack of risk assessments of food contact surfaces in these markets has led to substantial gaps in food safety knowledge and information that could help improve and maintain public health. Microbial profiling analyses were conducted on cutting boards that had been used to process pork, poultry, and seafood at 11 different wet markets. The markets differed in hygiene protocols and access to modern facilities. Irrespective of whether wet markets have access of modern infrastructure, the hygiene practices were largely found to be inefficient based on the prevalence of bacterial species typically associated with foodborne pathogens such as Campylobacter fetus, Clostridium perfringens, Staphylococcus aureus, and Vibrio parahaemolyticus; indicator organisms such as Escherichia coli; as well as nonfoodborne pathogenic bacterial species potentially associated with nosocomial infections, such as Klebsiella pneumoniae and Enterobacter cloacae. Other Vibrio species, V. parahaemolyticus and V. vulnificus, typically associated with contaminated raw or undercooked seafood with the potential to cause illness in humans, were also found on wooden cutting boards. This study indicated that the hygienic practices used in Hong Kong wet markets are not sufficient for preventing the establishment of spoilage or pathogenic organisms. This study serves as a basis to review current hygiene practices in wet markets and provides a framework to reassess existing safety protocols

    Questioning the source of identified non-foodborne pathogens from food-contact wooden surfaces used in Hong Kong's urban wet markets

    Get PDF
    In this study, a phylogenic analysis was performed on pathogens previously identified in Hong Kong wet markets' cutting boards. Phylogenetic comparisons were made between phylotypes obtained in this study and environmental and clinical phylotypes for establishing the possible origin of selected bacterial species isolated from wet market cutting board ecosystems. The results reveal a strong relationship between wet market bacterial assemblages and environmental and clinically relevant phylotypes. However, our poor knowledge of potential cross-contamination sources within these wet markets is further exacerbated by failing to determine the exact or presumed origin of its identified pathogens. In this study, several clinically relevant bacterial pathogens such as Klebsiella pneumoniae, Streptococcus suis and Streptococcus porcinus were linked to cutting boards associated with pork; Campylobacter fetus, Staphylococcus aureus, Escherichia coli, and A. caviae in those associated with poultry; and Streptococcus varanii, A. caviae, Vibrio fluvialis, and Vibrio parahaemolyticus in those associated with seafood. Identifying non-foodborne clinically relevant pathogens in wet market cutting boards in this study confirms the need for safety approaches for wet market meat, including cold storage. The presented study justifies the need for future systematic epidemiological studies to determine identified microbial pathogens. Such studies should bring about significant improvements in the management of hygienic practices in Hong Kong's wet markets and work towards a One Health goal by recognizing the importance of wet markets as areas interconnecting food processing with animal and clinical environments

    Insulin Growth Factor-I in Protein-Energy Malnutrition during Rehabilitation in Two Nutritional Rehabilitation Centres in Burkina Faso

    Get PDF
    Objective. To investigate the relationship between IGF-I and the nutritional status of West-African children hospitalised for nutritional rehabilitation. Patients and methods. A cohort study was performed in two centres for nutritional rehabilitation and education (CREN) in Burkina Faso. Children were followed and the anthropometric data as well as the capillary blood samples were taken on the 7th and on the 14th days after their admission. IGF-I levels were determined from dried blood spots on filter paper on IGF-I RIA, after separation of the IGF-I from its binding proteins, using Sep-Pak chromatography. Results. A total of 59 children was included in the cohort. The IGF-I mean geometric values (SD) were 6.3 (1.4) μg/L on admission, 8.6 (1.8) μg/L at day 7 and 13.6 (2.0) μg/L at day 14. The differences between these values were statistically significant (P < .001). There is a significant correlation between the changes of IGF-I with the change of weight for height Z-score (P = .01). Conclusion. These results suggest that IGF-I can be considered as a potential marker to follow the nutritional status of children admitted in hospital for protein and energy malnutrition

    Living biointerfaces based on non-pathogenic bacteria to direct cell differentiation

    Get PDF
    Genetically modified Lactococcus lactis, non-pathogenic bacteria expressing the FNIII7-10 fibronectin fragment as a protein membrane have been used to create a living biointerface between synthetic materials and mammalian cells. This FNIII7-10 fragment comprises the RGD and PHSRN sequences of fibronectin to bind α5β1 integrins and triggers signalling for cell adhesion, spreading and differentiation. We used L. lactis strain to colonize material surfaces and produce stable biofilms presenting the FNIII7-10 fragment readily available to cells. Biofilm density is easily tunable and remains stable for several days. Murine C2C12 myoblasts seeded over mature biofilms undergo bipolar alignment and form differentiated myotubes, a process triggered by the FNIII7-10 fragment. This biointerface based on living bacteria can be further modified to express any desired biochemical signal, establishing a new paradigm in biomaterial surface functionalisation for biomedical applications

    Upon impact: the fate of adhering <i>Pseudomonas fluorescens</i> cells during Nanofiltration

    Get PDF
    Nanofiltration (NF) is a high-pressure membrane filtration process increasingly applied in drinking water treatment and water reuse processes. NF typically rejects divalent salts, organic matter, and micropollutants. However, the efficiency of NF is adversely affected by membrane biofouling, during which microorganisms adhere to the membrane and proliferate to create a biofilm. Here we show that adhered Pseudomonas fluorescens cells under high permeate flux conditions are met with high fluid shear and convective fluxes at the membrane-liquid interface, resulting in their structural damage and collapse. These results were confirmed by fluorescent staining, flow cytometry, and scanning electron microscopy. This present study offers a 'first-glimpse' of cell damage and death during the initial phases of bacterial adhesion to NF membranes and raises a key question about the role of this observed phenomena during early-stage biofilm formation under permeate flux and cross-flow conditions.European Research Council (ERC
    corecore