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Abstract  17 

Nanofiltration (NF) is a high pressure membrane filtration process increasingly applied in drinking 18 

water treatment and water reuse processes. NF typically rejects divalent salts, organic matter and 19 

micropollutants.  However, the efficiency of NF is adversely affected by membrane biofouling, during 20 

which microorganisms adhere to the membrane and proliferate to create a biofilm. Here we show 21 

that adhered Pseudomonas fluorescens cells under high permeate flux conditions are met with high 22 

fluid shear and convective fluxes at the membrane-liquid interface, resulting in their structural 23 

damage and collapse. These results were confirmed by fluorescent staining, flow cytometry and 24 

scanning electron microscopy. This present study offers a “first-glimpse” of cell damage and death 25 

during the initial phases of bacterial adhesion to NF membranes, and raises a key question about the 26 

role of this observed phenomena during early stage biofilm formation under permeate flux and cross 27 

flow conditions.   28 

 29 

Introduction  30 

Nanofiltration (NF) is increasingly used as a polishing step in water treatment processes in order to 31 

remove organic matter and trace contaminants for the production of potable water 1. The efficiency 32 

of NF processes is however adversely affected by the formation of a biofilm on the membrane 33 

surface2-4. These biofilms comprise a community of dead and viable microorganisms embedded in a 34 

matrix consisting of polysaccharides, lipids, proteins, organic matter, amongst other components 4. 35 

Biofilms are difficult to remove and negatively impact the NF process5-9 by decreasing permeate flux, 36 

solute retention and membrane life10, 11. As such, most scientific studies in the context of NF 37 

operations have predominantly focused on the mature biofilm stage. 38 
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Biofilm formation on membranes is initiated by the irreversible adhesion of bacterial cells onto the 39 

surface. Adhesion is influenced by several factors, principally, the properties of the micro-organisms, 40 

membrane characteristics, feedwater and the conditions under which the process is operated12-17. 41 

Initial colonization of a surface is the first step in biofilm formation18 and an understanding of its 42 

mechanisms under representative NF operating conditions is important in order to develop new 43 

membranes, avoid the formation of biofilm and/or develop more efficient biofouling control 44 

strategies. 45 

Despite some studies covering initial adhesion onto commercial and novel NF and RO membrane 46 

surfaces, there is a gap in the understanding of how initial adhesion is impacted by permeate flux as 47 

most studies are carried out in the absence of, or under low pressure conditions and low Reynolds 48 

numbers14, 15, 19-21. In contrast, the mature biofilm on NF and RO membranes has been studied under 49 

higher permeability conditions and Reynolds numbers22-24. 50 

Understanding bacterial-membrane interactions in NF processes representative of full-scale systems 51 

is an area of research that has not yet received priority but is nevertheless critical in order to fully 52 

understand several important aspects of NF biofouling. One such aspect involves the investigation of 53 

the physiological state of adhered cells. Some NF and RO studies have reported a biofilm layer with a 54 

high ratio of dead cells (>50%) covering the membrane surface11, 22, whilst others have reported the 55 

quasi-absence of dead cells24. Finally, interspersed viable and non-viable cells along the membrane 56 

modules have also been obtained during membrane autopsy25. Although most studies focus on 57 

mature biofilms on NF membranes, very few have investigated the fate of bacterial cells during the 58 

initial stages of biofilm formation under conditions representative of full-scale NF processes.  59 

The objective of this study was to investigate the effects of permeate flux and flow shear conditions 60 

on adhered Pseudomonas fluorescens cells using two commercial NF membranes and different 61 

membrane configurations. 62 
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 63 

Materials and Methods 64 

Bacteria Strain and culture condition  65 

The selected model bacterial strain for this study was an mCherry-expressing Pseudomonas 66 

fluorescens PCL1701 26, stored at -80°C in King B broth 27 supplemented with 20% glycerol. Cultures 67 

were obtained by inoculating 100 mL King B broth supplemented with gentamicin at a final 68 

concentration of 10 µg mL-1 using a single colony of a previously grown culture on King B agar (Sigma 69 

Aldrich, Ireland) at 28°C. The inoculated medium was then incubated at 28°C with shaking at 75 rpm 70 

and left to grow to an Optical Density (OD600) of 1.0.  71 

 72 

Cell preparation for adhesion assay  73 

To evaluate bacterial adhesion under different flux conditions, cell concentration was standardized 74 

for each adhesion experiment by diluting the growth cultures to an OD600  of 0.2 in 200 mL of 0.1 M 75 

NaCl (Sigma-Aldrich, Ireland). Cells were then harvested by centrifugation at a G-force corresponding 76 

to 4461.1 g for 10 min using a Sorval RC5C Plus centrifuge (Unitech, Ireland) and a FiberliteTM f10-77 

6x500y fixed angle rotor (Thermo Fisher Scientific Inc., Dublin, Ireland), then washed twice using 0.1 78 

M NaCl and re-suspended in 200 mL 0.1 M NaCl solution, resulting in an inoculum of approximately 79 

108 cells/mL.  80 

When needed, cells were directly adjusted to an  OD600  of 0.2 in 200 mL of 0.1 M NaCl from an 81 

overnight culture without washing, followed by a second 1/10 dilution in a final volume 250 mL of 82 

0.1M NaCl feed solution prior to adhesion assays.   83 

 84 
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Membranes and filtration test units 85 

Adhesion experiments were performed on several nanofiltration and reverse osmosis membranes: 86 

NF90, NF270, BW30 and BW30 FR (Dow Filmtec Corp, USA) and ESNA1-LF and ESNA1-LF2 from 87 

Hydranautics (Nitto Denko Corp, USA). Membrane properties can be found in Table 1.  Prior to 88 

adhesion experiments, membranes were cut, thoroughly rinsed with pure water and left soaking 89 

overnight in the fridge at 4°C. Adhesion experiments were carried out in cross-flow for all the 90 

membranes and in dead-end filtration for the NF90 and NF270 membranes. No feed spacers were 91 

used throughout this study.  92 

 93 

Table 1 – NF and RO membrane properties 94 

 
 

Permeability (L/h.m2.bar)a NaCl Retentionb (%) 

NF90 6.8±0.5 87.8±4.0 

NF270 12.6±1.2 16.0±0.3 

BW30 2.6±0.3 93.5±2.1 

BW30 FR 2.8±0.5 92.9±1.3 

ESNA 1- LF 3.5±0.4 88.8±1.5 

ESNA1 - LF2 6.8±0.8 75.2±0.2 
a Permeability measured with MilliQ water at 21°C 95 
b 0.1 M NaCl at 15 bar, 21ºC and Re=579 96 

Cross-flow system  97 

The cross-flow system was setup as previously described28 with a few modifications (Cf. 98 

Supplementary Information; S1). Briefly, the system was designed as a loop arrangement composed 99 

of two feed tanks, a pump, and an array of three Membrane Fouling Simulator devices (MFS) 100 

positioned in parallel working in full recirculation mode. Membranes were first placed in MFS 101 

devices and compacted for a minimum of 18 hours at 21°C with MilliQ water (18.2 MΩ.cm-1, Veolia, 102 

Ireland). Pure water flux was measured for each membrane at 15 bar and at the pressure 103 
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subsequently used during the experiment. Prior to adhesion experiments, both feed tanks were 104 

filled with 4 L of a 0.1 M NaCl solution each, and bubbles were purged from the cross-flow system by 105 

recirculating the feed solution from one tank to another by coordinating the opening and closing of a 106 

system of ball valves, and ended by safely blocking one of the two feed tanks. The solution was then 107 

recirculated in the system at cross-flow experimental conditions set to 0.66 L.min-1 or Re=579 in 108 

each cell. Three  different selected pressures were tested independently, namely 3.1, 11.3 and 15.5 109 

bar at 21°C. Both feed and permeate were recirculated back to the feed tank. During this time, 110 

permeate flux, feed and permeate conductivity were measured for each MFS. The prepared 111 

bacterial cell inoculum containing approximately 108 cells/mL was then added to the active feed tank 112 

and recirculated in the system at a final concentration of 107 cells/mL at the set filtration conditions 113 

without stopping the cross-flow system.  114 

The concentration polarisation modulus β=Cm/Cf was calculated after 30 minutes of adhesion based 115 

on the equation: 116 

     

     
    (

  

 
)   (1) 117 

    118 
 119 

Where Cm, Cp and Cf are the NaCl concentrations at the membrane surface, permeate and feed, 120 

respectively, Jp is the permeate flux (m/s) and k is the mass transfer coefficient (m/s). The mass 121 

transfer coefficient was calculated as previously described by Semião et al.29. 122 

After 30 minutes, a non-recirculating system rinse was carried out, by first unblocking the unused 123 

feed tank containing 0.1 M NaCl and then by blocking the feed tank containing bacterial cells. This 124 

allowed flushing the system with a 0.1 M NaCl solution, allowing for the removal of non-adhered 125 

bacteria from the membrane surface while maintaining the filtration conditions. Adhesion tests for 126 

each membrane at different permeate flux conditions were repeated in at least two independent 127 

experiments. 128 
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Dead-end system  129 

Laboratory scale dead-end filtration was carried out in a MET-cell (Membrane Extraction Technology 130 

Ltd, London, UK) composed of a stainless steel cylindrical solution chamber with a capacity of 300 131 

mL, and fitted with a membrane porous support plate onto which the membrane was placed. A 132 

stirrer with a radius of 1.25 cm, attached to the cylinders inlet hatch was activated by placing the 133 

sealed cylinder on top of a magnetic stirrer. The cylinder was also fitted with an exit port from which 134 

the permeate was collected. A 2 L stainless steel tank was connected to the cylinder inlet port and 135 

was pressurized using a compressed nitrogen source, allowing a total feed volume of up to 2.3 L. 136 

Prior to experimentation, the working bacterial concentration in the dead-end system was adjusted 137 

to approximately 107 cells/mL. The experimental conditions were set at 3.1 and 15.5 bar at 21°C for a 138 

total period of 10, 15 or 30 minutes and a stirring speed of 600 rpm to avoid concentration 139 

polarisation. During this time, permeate flux and permeate conductivity were measured. At the end 140 

of the experiment the feed conductivity was also measured. For each time point, the adhesion was 141 

stopped by gradually depressurising the cylinder. Adhesion was repeated in at least three 142 

independent experiments for each membrane, set pressure and time point.   143 

The polarisation modulus β was calculated with equation (1), where the mass transfer coefficient 144 

was calculated based on the equation in Bowen et al. 30 145 

 146 

Adhesion quantification and cell structural integrity evaluation  147 

The quantification of bacterial adhesion was performed ex-situ for cross-flow and dead-end filtration 148 

processes. Both MFS and dead-end devices were carefully opened whilst submerged in a 0.1 M NaCl 149 

solution bath. It was previously determined that this process does not affect the adhesion of 150 

bacterial cells by more than 3% compared to doing the analysis in-situ (data not shown). The 151 

membranes were removed from the devices and biopsy samples were cut and placed at the bottom 152 
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of mini petri dishes whilst still submerged under 0.1 M NaCl bath. For assessing the degree of cell 153 

structural damage, fouled membranes were stained by adding and mixing 1 µL SYTOX Green ® (5 154 

mM) (Invitrogen, Dublin, Ireland) to individual petri dishes each containing a membrane sample. 155 

Although prone to artefacts (including false staining of live cells or incomplete staining penetration), 156 

differential membrane permeability staining techniques involving dyes such as SYTOX Green ®, are 157 

by far one of the simplest ways of localizing cell-membrane integrity at the single-cell level. 158 

Monitoring changes in damaged cell ratio during our experiments allowed monitoring the level of 159 

cell fitness as a consequence of changes in permeate flux conditions. The use of SYTOX Green ® was 160 

therefore ideal for providing a reliable means of directly assessing and quantifying the degree of cell 161 

damage in the present experimental setup.  Stained samples were subsequently incubated at 162 

ambient temperature for 10 minutes in the dark prior to epi-fluorescence microscopy (Olympus 163 

BX51) using a 10X objective. Two images were acquired for every chosen observation field using U-164 

MNG and U-MWB filter cubes for differentiating between fluorescent mCherry-tagged and SYTOX 165 

Green -stained Pseudomonas cells, respectively. Ten different fields of view were obtained at 166 

random points from each membrane sample. Cell surface coverage (%) for mCherry-tagged and 167 

SYTOX Green -stained cells was determined for each tested membrane using ImageJ® software, a 168 

Java-based image processing program (http://rsbweb.nih.gov/ij/). 169 

 170 

Flow cytometry 171 

To further assess the structural integrity of bacterial cells following exposure to both high ionic 172 

strength environments and convective flux at high pressures, bacterial sampling was performed 173 

following dead-end filtration on NF 270 membranes at 15 bar for 15 minutes using a non-washed 174 

cell suspension as stated above in the “dead-end system” description. After the adhesion 175 

experiment, non-deposited Pseudomonas cells in the feed solution were first sampled by collecting 1 176 

mL retentate into Eppendorf tubes. Following the careful removal of the fouled NF270 membrane 177 

http://rsbweb.nih.gov/ij/
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from the cylinder, a membrane sample of approximately 30 cm2 was cut and placed in a separate 178 

Petri-dish whilst still submerged under 0.1 M NaCl. Adhered cells were then re-suspended by gently 179 

tapping and scrapping on the membrane surface using a plastic spreader, before collecting 1 mL 180 

samples into Eppendorf tubes.  As a control, 1 mL of the feed bacterial suspension was collected 181 

prior to adhesion experiments in Eppendorf tubes. For assessing cell damage, bacterial samples were 182 

stained with SYTOX Green ® by adding 0.5 µL to individual Eppendorf tubes before incubation at 183 

ambient temperature in the dark for 10 minutes. Expression profiles for mCherry and SYTOX Green ® 184 

of all samples were identified and sorted by fluorescent-activated cell sorting (FACS) (BD FACSAria III 185 

Cell Sorter) using two lasers, 488 nm (blue) and 561 nm (green), with emission signals filtered 186 

through 530/30 nm and 6110/20 nm emission filters, respectively. FAC analysis was performed on at 187 

least 2 independent adhesion samples. All samples were analyzed on a FACSAria III using FlowJo 188 

software. Statistical significance of differences in gated population frequencies (%) was tested using 189 

ANOVA in MINITAB v15.1 (Minitab Inc., State College, PA, USA). The change in frequency counts in 190 

all gated populations as a result of dead-end filtration in the bulk liquid and on the membrane 191 

surface was analyzed with Tukey's test for pair wise comparisons (Minitab). All tests were performed 192 

at 5% significance level. 193 

 194 

SEM  195 

For scanning electron microscopy (SEM) observations, NF 270 fouled membranes following dead-196 

end filtration at 15 bar for 15 minutes were chemically fixated and dehydrated in individual mini-197 

Petri dishes. Submerged membrane samples were fixed by adding glutaraldehyde to a final 198 

concentration of 2.5%, and left to incubate overnight.  199 

Separately, FACS collected sorted cells were filtered through individual 0.2 µm pore-size 200 

polycarbonate filters, which were placed in individual petri dishes and fixed overnight using a 201 

solution containing 2.5% glutaraldehyde and 0.1 M sodium cacodylate. All samples were then rinsed 202 
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with MilliQ and dehydrated in ethanol. When required, samples were exposed to 50% then 100% 203 

hexamethyldisilizane before drying in air.  Samples were gold sputtered using an Eintech K575K 204 

coater for 30 s at x V 30 mA. High magnification imaging of the membrane surfaces was performed 205 

under a Hitachi Quanta 3D FEG scanning electron microscope at the UCD Nano-imaging and 206 

Materials Analysis Centre.  207 

 208 

Results and Discussion  209 

Effect of permeate flux on the structural integrity of Pseudomonas fluorescens cells during 210 

Nanofiltration and Reverse Osmosis 211 

 212 

The effect of permeate flux on damaged cells to live cells ratio based on acquired SYTOX Green and 213 

mCherry positive signals of adhered Pseudomonas fluorescens cells to six nanofiltration and reverse 214 

osmosis membranes is shown in Figure 1. A clear positive correlation between the ratio of damaged 215 

cells and permeate flux was obtained for all tested Nanofiltration and Reverse Osmosis membranes, 216 

whereby increasing permeate flux conditions led to higher ratios of damaged adhered P. fluorescens 217 

cells. The only exception was the BW30 FR membrane, where the ratio did not change substantially 218 

for different permeate fluxes.  219 

Comparatively low increases in damaged cell ratios were observed for membranes with low to mid 220 

permeate fluxes acquired at 3, 11 and 15 bar pressure filtration settings (<45 L/h.m2 ).  For BW30, 221 

the ratio increased from 0.22±0.08 for a flux of 0.5 L/h.m2 to 0.27±0.11 for 13.7 L/h.m2 up to 222 

0.34±0.01 for 21.2 L/h.m2. In the  case of BW30 FR, the ratio did not substantially  change 223 

throughout the studied permeate flux range, varying from 0.41±0.13 for a flux of 0.5 L/h.m2 down to 224 

0.33±0.02 for 21.2 L/h.m2. For NF90, the ratio increased from 0.32±0.12 for a flux of 2.2 L/h.m2 to 225 

0.35±0.27 for 30.7 L/h.m2 up to 0.41±0.03 for 40.0 L/h.m2. Adhesion on ESNA1-LF led to a ratio 226 
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increase from 0.04±0.04 for a flux of 1.1 L/h.m2 to 0.23±0.17 for 18.8 L/h.m2 up to 0.25±0.04 for 28.8 227 

L/h.m2 , whilst adhesion on  ESNA1-LF2 led to a ratio increase from 0.12±0.12 for a flux of 3.4 L/h.m2 228 

up to 0.27±0.16 for 45.5 L/h.m2. In contrast membranes with high permeate fluxes showed the most 229 

significant increase in damaged cell ratio: the NF270 membrane had a ratio increase from 0.06±0.02 230 

at 19 L/h.m2 to 31±0.09 for 97.0 L/h.m2 up to 0.83±0.04 for 116 L/h.m2. 231 

These results therefore indicate a positive correlation between damaged/live ratio of adhered cells 232 

with permeate flux, which is more pronounced for nanofiltration membranes with a wide range of 233 

permeate fluxes compared to tight nanofiltration/reverse osmosis membranes. A more in depth 234 

analysis is therefore needed to identify  the specific mechanisms responsible for cell damage under 235 

permeate flux conditions.    236 

 237 

Effect of hydrodynamic shear, permeate flux and filtration time on the structural integrity of 238 

Pseudomonas fluorescens cells during Nanofiltration. 239 

 240 

The effect of different pressure-controlled permeate flux conditions and filtration configuration on 241 

the structural integrity of deposited P. fluorescens cells were investigated for the NF 270 and NF 90 242 

membranes in cross-flow and dead-end mode operation for 30 minutes (Figure 2). The effect of 243 

filtration time was also assessed by performing dead-end NF experiments for 10 minutes (Figure 2).   244 

The ratio of damaged cells versus total live cells on membranes following cross-flow filtration was 245 

found to be between 1.8 to 3 times higher than that following dead-end filtration for the same 246 

filtration conditions, regardless of the pressure conditions tested and membrane used. Although 247 

measured permeate fluxes were lower under cross-flow compared to dead-end filtration conditions 248 

(Table 2), the additional filtration configuration in the form of cross-flow velocity resulted in higher 249 

ratios of damaged cells through shear stress.  Cell damage of adhered cells during NF processes is 250 
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therefore not solely caused by permeate flux conditions, but rather  in combination with additional 251 

stress factors such as shear, which may lead to aggravated cell structural damage.      252 

 253 

Table 2: Mean permeate fluxes during cell adhesion assays on either NF 270 or NF 90 membranes at 254 

different pressure conditions (3 bar or 15 bar) and filtration systems. Error represents standard error 255 

of the mean.    256 

 Permeate Flux (L / h . m2) 

NF 270 NF 90 

3 bar 15 bar 3 bar 15 bar 

MET (Dead-end) 37.67 ± 0.60 174.46 ± 4.7 8.23 ± 0.30 58.03 ± 2.4 

MFS (Cross-flow) 17.60 ± 0.04 115.66 ± 2.4 2.20 ± 0.04 40.04 ± 1.0 

 257 

 258 

The NF270 membrane at 15 bar, which had the highest permeate fluxes of 174.4 L/h. m2 for dead- 259 

end and 115.6 L/h. m2 for cross-flow, lead to higher ratios of damaged cells of 41 % and 82%, 260 

respectively, whereas the NF 90 membrane under identical pressure conditions led to both lower 261 

permeate fluxes of 58 and 40 L/h. m2, as well as lower ratios of damaged cells of 22% and 43%, 262 

under dead-end and cross-flow filtration conditions, respectively.  At 3 bar pressure conditions, the 263 

permeate fluxes for the NF 270 membrane were of 37.6 L/h. m2 for dead end and 17.6 L/h. m2 for 264 

cross-flow and lead to the lowest observed ratios of damaged/live cell of 14% and 6%. These 265 

observations confirm that the degree of cell damage on membranes during NF processes is 266 

correlated to permeate flux. Interestingly, despite the lowest permeate flux conditions on NF 90 267 

membranes at 3 bar pressure, the ratio of damaged cells were found to be similar to those on the NF 268 

270 membrane for the same pressure under dead-end filtration conditions. This confirms that there 269 

is a minimum permeate flux by which the ratio of damaged cells starts increasing substantially, as 270 

suggested from Figure 1. In dead-end mode conditions, the ratio of damaged cells was found to be 271 
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around 15% at permeate fluxes lower than 40 L/h. m2 and increased to 22% and 41% at higher 272 

permeate flux values of 58 and 174.4 L/h. m2, respectively. The same occurred in cross-flow filtration 273 

conditions; the ratio of damaged cells was lower than 40% at permeate fluxes lower than 40 L/h. m2, 274 

only to increase to 82% when higher permeate flux conditions were of 115.6 L/h. m2. 275 

These results suggest that the effect of permeate flux contributed significantly to structural damage 276 

of the adhered P. fluorescens cells, especially for fluxes above 58 L/h.m2. Furthermore, increasing 277 

permeate flux during NF lead to higher damaged cell ratios, regardless of the tested membrane 278 

used.  The additional cross-flow shear exacerbated cell stress and damage, by eroding the cell wall. 279 

This type of cell damage is comparable to that incurred following high speed centrifugation. A study 280 

by Gilbert et al (1991) demonstrated that Gram-negative cell wall material could be stripped off 281 

following centrifugation forces of 10 000 g in which hydrostatic pressures within a 15 mL centrifuge 282 

could attain 10 bar 31. Furthermore, the bacterial cell surface is fragile and can be easily modified 283 

and damaged depending on the exerted force, as previously demonstrated by Grandbois et al 284 

(1999), where it was shown that most organic compounds constituting cell surface molecules 285 

anchored on the cell membrane are damaged at only 4.5 nN 32.         286 

Another possible factor that might affect cell structural stability during adhesion in NF processes is 287 

the occurrence of concentration polarisation. Under permeate flux conditions, concentration 288 

polarisation is a phenomenon whereby concentration gradients of solutes present in the feed 289 

solution form at the membrane-liquid interface. In the present study it can be expected that as a 290 

result of concentration polarisation, the adhered bacterial cells are exposed to an elevated 291 

concentration of dissolved salt, and hence ionic strength. Bacterial cells are known to respond to 292 

osmolarity changes within their environment by adjusting their Turgor pressure through a strategic 293 

exoosmotic release of water 33, resulting in cell-shrinkage, the level of which would depend on solute 294 

concentration in the surrounding environment. 295 
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The calculated polarisation  modulus for several experiments in dead-end and cross-flow 296 

configuration are presented in Table 3 for 30 minutes of adhesion. 297 

 298 

Table 3 – Polarisation modulus at the end of 30 minutes for the NF90 and NF270 membranes in 299 

dead-end and cross-flow mode 300 

 Dead-end Cross-flow 

 3 bar 15 bar 3 bar 15 bar 

NF270 1.14 ± 0.06 2.68 ± 2.39 1.03 ± 0.003 1.46 ± 0.11 
NF90 1.05 ± 0.01 1.66 ± 0.39 1.01 ± 0.002 1.47 ± 0.10 

 301 

As can be seen in Table 3, in cross-flow mode both membranes had similar polarisation modulus 302 

when subjected to the same hydrostatic pressure. The higher flux of the NF 270 membrane 303 

compared to the NF 90 membrane balanced the lower retention of the NF 270 in regards to NaCl 304 

retention compared to the NF 90 (see equation (1)). If concentration polarisation was in fact the 305 

culprit for the higher ratio of damaged cells, then one would expect the same ratio for the NF 270 306 

and the NF 90 membranes at 3 bar and the same ratio at 15 bar, since the polarisation modulus is 307 

similar. However from Figure 2, the NF 270 has a higher ratio of damaged cells compared to the NF 308 

90 membrane at 15 bar. This is linked to the fact that the NF 270 membrane has a higher permeate 309 

flux compared to the NF 90 membrane (Table 2), allowing concluding that convection towards the 310 

membrane surface causes cell damage. Furthermore, in dead-end experiments the permeate flux of 311 

the NF 270 membrane at 3 bar was slightly lower than the one of the NF 90 at 15 bar (Table 2). The 312 

polarisation modulus for the NF90 membrane however was 1.6 compared to 1.1 for the NF 270 313 

membrane (Table 3).  Despite their differences in polarisation modulus under similar permeate flux 314 

conditions, the ratio of damaged cells on both NF 90 and NF 270 were relatively low at 25% and 15%, 315 

respectively, with differences associated with variations in permeate fluxes. These results suggest 316 

that concentration polarisation did not play a significant role in influencing the structural stability of 317 
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cells. This was further verified, by monitoring the electrophoretic mobility of P. fluorescens cells to 318 

high salt concentrations (Cf. Supplementary Information; S3). Results showed that no significant 319 

change in bacterial cell wall electronegativity occurred, even when exposed to extreme high salt 320 

concentrations.  Nevertheless, changes in cell membrane physicochemical and dynamic properties 321 

may occur as a direct consequence of increased solute concentration. In one recent study 322 

investigating the effects of bulk medium ionic strengths on the morphological, nanomechanical and 323 

electrohydrodynamic properties of different Escherichia coli K-12 cell wall mutants, Francius et al 324 

(2011) showed that bacterial exoosmotic water loss at high salt concentrations resulted in a 325 

combined contraction of bacterial cytoplasm together with an electrostatically-driven shrinkage of 326 

the surface appendages, which also led to a decrease in cell electronegativity 34. This change in 327 

physicochemical properties could favour bacterial adhesion, as well as cell to cell aggregation, as 328 

explained by the DLVO, XDLVO theory 35, 36. 329 

To determine whether the observed damaged cell ratios were time dependant, adhesion 330 

experiments were also carried out for 10 minutes using a dead-end filtration system and compared 331 

with ratios following 30 minute adhesion experiments (Figure 2). Interestingly higher damaged cell 332 

ratios were observed at 30 minutes compared to 10 minutes deposition periods regardless of the 333 

pressure:  4 and 2.8 times higher at 3 bar and 15 bar, respectively, for the NF 270 membrane, and 15 334 

and 2.3 times higher at 3 bar and 15 bar, respectively, for the  NF 90 membrane. Higher damaged to 335 

live cell ratios in situations of lower permeate flux under cross-flow filtration further confirms that 336 

active shear forces over the course of high pressure nanofiltration does cause damage to adhered 337 

cells. Corresponding total number of adhered cells for each filtration experiments is provided in the 338 

supplementary information section (Table S4). Increasing exposure time under the same permeate 339 

flux conditions further increases the level of cell damage.  340 

Dead-end filtration was chosen in combination with flow cytometry to qualitatively assess the 341 

structural fate of deposited cells onto NF membranes as they are subjected to physical compaction 342 
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onto the membrane caused by the permeate flux, as well as exposed to different ionic 343 

concentrations caused by concentration polarisation (Figure 3 & 4). The NF 270 membrane was 344 

selected given its higher permeate flux properties at 15 bar pressure conditions compared to NF 90 345 

membranes. To ensure sufficient retentate sampling following dead-end filtration, the filtration 346 

experiment was stopped after 15 minutes.   347 

 348 

Prior to filtration (control),  the suspension of Pseudomonas fluorescens cells was composed of 349 

3.27% ± 1.33% damaged cells (Q1) , 4.69% ± 4.7 % partially damaged cells (Q2), 71.55% ± 4.73% 350 

healthy cells (Q3) and 16.9% ± 5.23% debris (Q4) (Figure 3). No significant differences were observed 351 

for non-deposited cells in the bulk liquid after dead-end filtration compared to cells prior filtration 352 

(p=1.00). The bulk suspension population was composed of 3.0% ± 0.46% (Q1); 5.0% ± 4.58% (Q2), 353 

69.0% ± 3.6% (Q3,) and 17.0% ± 0.91% (Q4) (Figure 3). This shows that pressure alone did not impact 354 

on the structural integrity of the cells, as the cells in the bulk liquid subjected to 15 bar show no 355 

statistical difference from the ones in the control.   356 

Changes in population fractions were observed for deposited cells on the membranes compared to 357 

cells prior to filtration (Figure 3). The damaged cell fraction (Q1) was composed of 11.27 % ± 6.97%, 358 

while the partially damaged fraction was composed of 17.09 % ± 12.1%. The fraction of healthy cells 359 

significantly reduced to 38.3% ± 15.83% compared to the healthy cell fraction prior to filtration (p= 360 

0.013). Moreover the fraction of debris also increased to 29.6 % ± 3.95 %.  These results not only 361 

confirmed epi-fluorescence microscopy observations previously shown, but also expose the resulting 362 

increased level of debris fraction following NF, a tell-tale sign of eroded bacterial cell wall 363 

components, disintegrated cells and even relinquished cytoplasmic material. The consequential 364 

abrasion of cell membrane molecules resulting from exposure to high shear forces in cross-flow 365 

during NF could have led to imbalances of cell wall components resulting in the weakening of the 366 

bacterial skeletal structure, potentially resulting in cell collapse. The highly elastic properties of the 367 
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bacterial cell wall, known to withstand pressures up to 1000 bar, has been thoroughly described in 368 

the literature 37, 38. Moreover several studies have shown that while maintaining a relatively 369 

compliant cell elasticity under normal condition, bacterial cell wall stiffens as a direct response to 370 

tensile stress, hence providing the cells with a unique mechanical advantage by preventing abrupt 371 

changes in cell morphology 39.  However, the combined effect of hydrodynamic shear, collision shear 372 

and convective flux encountered at the membrane surface during nanofiltration may lead to shear 373 

injuries localised on bacterial cell wall during deposition. Fluid mechanical stress caused by 374 

hydrodynamic shear have been shown to induce cell damage and cell death in mammalian cells 40, 41 375 

as well as in bacterial cell 42, causing cell collapse and disintegration.   376 

Further SEM analysis of sorted cells (Figure 4) revealed that sorted SYTOX Green positive cells prior 377 

to filtration (Figure 4 A and corresponding SEM micrographs) were structurally more intact than 378 

sorted cells following compaction on the membrane which showed signs of structural weakness. As 379 

can be seen in Figure 4 C and the first corresponding SEM micrographs, the bacterial cell membrane 380 

wall is compromised, with intracellular material being released in contrast with the bacteria showed 381 

in the adjacent SEM micrographs which shows no cell wall integrity issues. Although one recent 382 

study demonstrated that most cells suffer cataclysmic wall failure in situations where cell turgor is 383 

increased 43, the results presented in this study indicate that compaction associated with shear 384 

stress can potentially lead to cell collapse.  385 

 386 

Hydrodynamic shear mediated cell death: a possible precursor to biofouling during nanofiltration.  387 

To further investigate the resulting effect of NF on bacterial cells,  SEM of the membranes following 388 

adhesion experiments were performed to qualitatively assess the different populations identified 389 

from flow cytometry analysis (Figure 4).  Filtration experiments on NF 270 membranes at 15 bar for 390 

15 minutes revealed an abundance of both damaged/collapsed, and intact cells, as well as what 391 

looked like cell debris, as shown on Figure 5. Some of the collapsed cells clearly demonstrated signs 392 
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of relinquishing intracellular material (Figure 5 A-B-C-D-F), which in some cases was also associated 393 

with cells that had clumped.   394 

 395 

Based on these observations, the presence of cell debris originating from collapsed cells may 396 

potentially serve as a way to recruit planktonic cells, helping them to consolidate onto the 397 

membrane.  One recent study showed that DNA released from cells during lysis, becomes a key 398 

component of the macromolecular scaffold in many different biofilms 44.  Although, cell death has 399 

been recognised as playing a significant role in biofilm formation 45,  the phenomena at the 400 

membrane liquid interface described in this study may constitute another identified mechanism 401 

through which cytoplasmic cell material is released to the environment. Such a release may not only 402 

speed up the biofilm formation process, but may serve as a “nutrient rich cushion” on which new 403 

cells may thrive on and consolidate on the membrane.  Additionally, the properties of the 404 

cytoplasmic material may also contribute in the recruitment of planktonic cells from the 405 

environment, enabling them to anchor down on the membrane surface and protect them from 406 

shear stress during nanofiltration.  In one recent study, Petterson et al (2013) demonstrated the 407 

important role of extracellular DNA in biofilms was attributed to its viscoelastic relaxation properties 408 

providing embedded cells with protection against chemical and mechanical stresses 46.   409 

 410 

The work described in this paper investigated the extent of damage of adhered bacterial cells during 411 

high pressure NF processes. Exposure times of up to 30 minutes at high permeate flux conditions at 412 

15 bar was shown to have significantly damaged P. fluorescens cells, irrespective of cross-flow or 413 

dead-end filtration type systems.  Cells adhering to membranes over the course of NF undergo 414 

substantial levels of stress affecting their structural integrity, ultimately leading to the release of 415 

cytoplasmic material onto the membrane. This could be an important element in biofilm formation 416 

by providing embedded cells protection against chemical and mechanical stresses.  This study 417 

identifies cell lysis as a possible missing link in the membrane biofouling story, a relevant step 418 
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between initial cell adhesion and subsequent biofilm formation during nanofiltration. Further 419 

studies, however, need to be carried out in order to confirm whether cell damage caused by cross-420 

flow and permeate flux indeed enhances biofilm formation. Such studies should include bacterial 421 

physiological response to permeate flux conditions. This can be achieved by exposing bacterial cells 422 

to metabolic inhibitors or bacteriostatic antibiotics prior to adhesion assays, to determine whether 423 

cell damage is induced by solely physical means or through an active response from individual cells. 424 
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 444 

Legend to figures 445 

Figure 1 - Ratio of damaged cells to live cells of adhered Pseudomonas fluorescens cells onto  six 446 

NF/RO membranes in a cross-flow system (columns) as a function of permeate flux (black squares): 447 

NF 270, NF 90, BW30 FR, BW30, ESNA1-LF, ESNA1-LF2 (107 cells/mL of P. fluorescens in 0.1 M NaCl, 448 

30 minute adhesion, cross-flow conditions: 21°C, pH7, 0.66 L.min-1 or Re=579 in each MFS cell). 449 

Adhesion assays were performed in at least two independent experiments. Error bars represent 450 

standard error of the mean. (Note: the permeate flux is apparently not seen as a linear relationship with 451 

pressure because the columns are not equally spaced in pressure. The linear correlation coefficient of 452 

permeate flux vs pressure is in fact r2>0.995 for these experiments) 453 

 454 

Figure 2: The ratio of damaged cells to live cells based on acquired SYTOX Green and mCherry 455 

positive signals of adhered Pseudomonas fluorescens cells on NF 270 and NF 90 membranes, 456 

following nanofiltration using either cross-flow or dead-end type systems. Adhesion assays were 457 

performed in at least three independent experiments. Error bars represent standard error of the 458 

mean. 459 

 460 

Figure 3: Mean population fractions of Pseudomonas fluorescens cells prior to dead-end filtration 461 

(control), and after dead-end filtration from the remaining bulk retentate volume (Non-deposited 462 

cells) and the membrane (Adhered cells). The dead-end filtration conditions were 15 bar, 15 463 

minutes, NF270 membrane and 150 rpm. Population frequencies (%) were divided into 4 quadrants 464 

(Q1-Q4) obtained following FACS data analysis based on mCherry and SYTOX Green fluorescence 465 

intensities (Cf. Supplementary information; S2). Q1 represent the fraction of mCherry negative and 466 

SYTOX Green  positive cells (Damaged cells), Q2 equates to mCherry positive and SYTOX Green  467 

positive cells (partially damaged cells), Q3 is associated with mCherry positive and SYTOX Green  468 
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negative cells (healthy cells), while Q4 clusters mCherry negative and SYTOX Green  negative cells 469 

(Debris). FACS was performed in at least two independent experiments. Error bars represent 470 

standard deviation of the mean. 471 

 472 

Figure 4: Population shifts from healthy cells (mCherry positive) to damaged cells (SYTOX Green  473 

positive) following deposition at 15 bar pressure conditions on NF 270 membrane. Representative 474 

plots from three separate filtration experiments show the gated suspended Pseudomonas 475 

fluorescens cells (A) prior to dead-end filtration, (B) non-deposited cells in the retentate following 476 

dead-end filtration and (C) re-suspended deposited cells following dead-end filtration. Scanning 477 

electron micrographs of sorted cells from selected gated populations was performed for comparing 478 

cells prior and after dead-end filtration at 15 bar. 479 

 480 

Figure 5: Scanning electron micrographs of fouled NF 270 membranes following dead-end 481 

nanofiltration for 15 minutes at 15 bar.  Representative micrographs (ABCDEF) were obtained 482 

depicting the fate of P. fluorescens cell on following dead-end nanofiltration for 15 minutes at 15 483 

bar.  484 

 485 

 486 
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