1,180 research outputs found

    Relativistic Structure of the Nucleon Self-Energy in Asymmetric Nuclei

    Get PDF
    The Dirac structure of the nucleon self-energy in asymmetric nuclear matter cannot reliably be deduced from the momentum dependence of the single-particle energies. It is demonstrated that such attempts yield an isospin dependence with even a wrong sign. Relativistic studies of finite nuclei have been based on such studies of asymmetric nuclear matter. The effects of these isospin components on the results for finite nuclei are investigated.Comment: 9 pages, Latex 4 figures include

    Neutron star properties and the equation of state of neutron-rich matter

    Full text link
    We calculate total masses and radii of neutron stars (NS) for pure neutron matter and nuclear matter in beta-equilibrium. We apply a relativistic nuclear matter equation of state (EOS) derived from Dirac-Brueckner-Hartree-Fock (DBHF) calculations. We use realistic nucleon-nucleon (NN) interactions defined in the framework of the meson exchange potential models. Our results are compared with other theoretical predictions and recent observational data. Suggestions for further study are discussed.Comment: 13 pages, 9 figures, 1 table; Revised version, accepted for publication in Physical Review

    Dengue epidemics and human mobility

    Get PDF
    In this work we explore the effects of human mobility on the dispersion of a vector borne disease. We combine an already presented stochastic model for dengue with a simple representation of the daily motion of humans on a schematic city of 20x20 blocks with 100 inhabitants in each block. The pattern of motion of the individuals is described in terms of complex networks in which links connect different blocks and the link length distribution is in accordance with recent findings on human mobility. It is shown that human mobility can turn out to be the main driving force of the disease dispersal.Comment: 24 pages, 13 figure

    Equation of State of Nuclear Matter at high baryon density

    Get PDF
    A central issue in the theory of astrophysical compact objects and heavy ion reactions at intermediate and relativistic energies is the Nuclear Equation of State (EoS). On one hand, the large and expanding set of experimental and observational data is expected to constrain the behaviour of the nuclear EoS, especially at density above saturation, where it is directly linked to fundamental processes which can occur in dense matter. On the other hand, theoretical predictions for the EoS at high density can be challenged by the phenomenological findings. In this topical review paper we present the many-body theory of nuclear matter as developed along different years and with different methods. Only nucleonic degrees of freedom are considered. We compare the different methods at formal level, as well as the final EoS calculated within each one of the considered many-body schemes. The outcome of this analysis should help in restricting the uncertainty of the theoretical predictions for the nuclear EoS.Comment: 51 pages, to appear in J. Phys. G as Topical Revie

    Scalar and vector decomposition of the nucleon self-energy in the relativistic Brueckner approach

    Full text link
    We investigate the momentum dependence of the nucleon self-energy in nuclear matter. We apply the relativistic Brueckner-Hartree-Fock approach and adopt the Bonn A potential. A strong momentum dependence of the scalar and vector self-energy components can be observed when a commonly used pseudo-vector choice for the covariant representation of the T-matrix is applied. This momentum dependence is dominated by the pion exchange. We discuss the problems of this choice and its relations to on-shell ambiguities of the T-matrix representation. Starting from a complete pseudo-vector representation of the T-matrix, which reproduces correctly the pseudo-vector pion-exchange contributions at the Hartree-Fock level, we observe a much weaker momentum dependence of the self-energy. This fixes the range of the inherent uncertainty in the determination of the scalar and vector self-energy components. Comparing to other work, we find that extracting the self-energy components by a fit to the single particle potential leads to even more ambiguous results.Comment: 35 pages RevTex, 7 PS figures, replaced by a revised and extended versio

    A Dirac-Hartree-Bogoliubov approximation for finite nuclei

    Get PDF
    We develop a complete Dirac-Hartree-Fock-Bogoliubov approximation to the ground state wave function and energy of finite nuclei. We apply it to spin-zero proton-proton and neutron-neutron pairing within the Dirac-Hartree-Bogoliubov approximation (we neglect the Fock term), using a zero-range approximation to the relativistic pairing tensor. We study the effects of the pairing on the properties of the even-even nuclei of the isotopic chains of Ca, Ni and Sn (spherical) and Kr and Sr (deformed), as well as the NN=28 isotonic chain, and compare our results with experimental data and with other recent calculations.Comment: 43 pages, RevTex, 13 figure

    Hartree Fock Calculations in the Density Matrix Expansion Approach

    Get PDF
    The density matrix expansion is used to derive a local energy density functional for finite range interactions with a realistic meson exchange structure. Exchange contributions are treated in a local momentum approximation. A generalized Slater approximation is used for the density matrix where an effective local Fermi momentum is chosen such that the next to leading order off-diagonal term is canceled. Hartree-Fock equations are derived incorporating the momentum structure of the underlying finite range interaction. For applications a density dependent effective interaction is determined from a G-matrix which is renormalized such that the saturation properties of symmetric nuclear matter are reproduced. Intending applications to systems far off stability special attention is paid to the low density regime and asymmetric nuclear matter. Results are compared to predictions obtained from Skyrme interactions. The ground state properties of stable nuclei are well reproduced without further adjustments of parameters. The potential of the approach is further exemplified in calculations for A=100...140 tin isotopes. Rather extended neutron skins are found beyond 130Sn corresponding to solid layers of neutron matter surrounding a core of normal composition.Comment: Revtex, 29 pages including 14 eps figures, using epsfig.st

    Two-dimensional SIR epidemics with long range infection

    Full text link
    We extend a recent study of susceptible-infected-removed epidemic processes with long range infection (referred to as I in the following) from 1-dimensional lattices to lattices in two dimensions. As in I we use hashing to simulate very large lattices for which finite size effects can be neglected, in spite of the assumed power law p(x)xσ2p({\bf x})\sim |{\bf x}|^{-\sigma-2} for the probability that a site can infect another site a distance vector x{\bf x} apart. As in I we present detailed results for the critical case, for the supercritical case with σ=2\sigma = 2, and for the supercritical case with 0<σ<20< \sigma < 2. For the latter we verify the stretched exponential growth of the infected cluster with time predicted by M. Biskup. For σ=2\sigma=2 we find generic power laws with σ\sigma-dependent exponents in the supercritical phase, but no Kosterlitz-Thouless (KT) like critical point as in 1-d. Instead of diverging exponentially with the distance from the critical point, the correlation length increases with an inverse power, as in an ordinary critical point. Finally we study the dependence of the critical exponents on σ\sigma in the regime 0<σ<20<\sigma <2, and compare with field theoretic predictions. In particular we discuss in detail whether the critical behavior for σ\sigma slightly less than 2 is in the short range universality class, as conjectured recently by F. Linder {\it et al.}. As in I we also consider a modified version of the model where only some of the contacts are long range, the others being between nearest neighbors. If the number of the latter reaches the percolation threshold, the critical behavior is changed but the supercritical behavior stays qualitatively the same.Comment: 14 pages, including 29 figure

    Relativistic Brueckner-Hartree-Fock calculations with explicit intermediate negative energy states

    Get PDF
    In a relativistic Brueckner-Hartree-Fock calculation we include explicit negative-energy states in the two-body propagator. This is achieved by using the Gross spectator-equation, modified by medium effects. Qualitatively our results compare well with other RBHF calculations. In some details significant differences occur, e.g, our equation of state is stiffer and the momentum dependence of the self-energy components is stronger than found in a reference calculation without intermediate negative energy states.Comment: 13 pages Revtex, 5 figures included seperatel
    corecore