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In this work we explore the effects of human mobility on the dispersion of a vector borne disease. We combine
an already presented stochastic model for dengue with a simple representation of the daily motion of humans on
a schematic city of 20 × 20 blocks with 100 inhabitants in each block. The pattern of motion of the individuals is
described in terms of complex networks in which links connect different blocks and the link length distribution
is in accordance with recent findings on human mobility. It is shown that human mobility can turn out to be the
main driving force of the disease dispersal.
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I. INTRODUCTION

Dengue fever is a vector borne disease produced by a
flavivirus of the family flaviviridae [1]. It is found in tropical
and subtropical regions around the world, predominantly in
urban and semiurban areas. Dengue hemorrhagic fever (DHF)
[2], a potentially lethal complication, was first recognized in
the 1950s during dengue epidemics in the Philippines and
Thailand and nowadays affects most Asian countries and has
become a leading cause of hospitalization and death among
children in the region.

There are four distinct, but closely related, serotypes of the
virus that cause dengue: DEN1, DEN2, DEN3, and DEN4.
Recovery from infection by one provides lifelong immunity
against that serotype but confers only partial and transient
protection against subsequent infection by the other three
serotypes. There is good evidence that sequential infection
with different serotypes increases the risk of developing DHF.
Recently, the number of countries affected by this epidemic
has increased and severe forms have become more frequent.
The main vectors of dengue are Aedes aegypti and Aedes
albopictus.

This problem attracts the attention of researchers in dif-
ferent fields from biologists to physicists [3]. The research
aimed at producing dengue models for public policy use
began with Newton and Reiter [4] who introduced a minimal
model for dengue in the form of a set of ordinary differential
equations (ODE) for the human population disaggregated in
susceptible, exposed, infected, and recovered compartments.
The mosquito population was not modeled in this early work.
A different starting point was taken by Focks et al. [5,6]
that began by describing mosquito populations in a computer
framework named Dynamic Table Model, where later the
human population (as well as the disease) was introduced [7].

Newton and Reiter’s model (NR) favors economy of
resources and mathematical accessibility; in contrast, Fock’s
model emphasizes realism. These models represent in dengue
two contrasting compromises in the standard trade-off in
modeling. A third starting point has been recently added. Otero
and Solari (OS) developed a dengue model [8] which includes
the evolution of the mosquito population [9,10] and is spatially
explicit. This last model is somewhat in between Fock’s and
NR as it is formulated as a state-dependent Poisson model with
exponentially distributed times.

ODE models have received most of the attention. Some
of the works explore variability of vector population [11],
human population [12], the effects of hypothetical vertical
transmission of dengue in vectors [13], seasonality [14], and
age structure [15] as well as incomplete gamma distributions
for the incubation and infectious times [16]. Comparison with
real epidemics has shown that there is a need to consider the
spatial heterogeneity as well [17].

In a previous work [18] we have developed a dengue model
which includes the evolution of the mosquito population and
is spatially explicit. In that work the spatial spread of the
infection was driven by the flights of mosquitoes that gave rise
to a diffusion process. In it we analyzed the evolution of dengue
infection in a city of 20 × 20 blocks with 100 individuals in
each one. This population was fixed throughout the calculation
and no mobility of the individuals was allowed.

As such, in that model, the spatial evolution of the dengue
infection was only driven by the flight of mosquitoes as the
mobility of humans was not included. It is usually recognized
that human mobility is not only necessary to be included in
human infection spread models, but that it might be the main
source of the dynamics behind spatiotemporal phenomena on
geographic scales (i.e., the spread of infection from city to city
due to people flying long distances by plane). It is thus very
important to address the problem of the mobility of humans
and incorporate it into the models to be able to make more
reliable predictions, and then, to be able to propose effective
public policies against the dispersal of a known or emerging
disease.

Including the mobility of the human population in a model is
not an easy task given the complexity of human behavior. The
first problem to address is the technical and ethical difficulties
that arise when trying to get information about the mobility
of humans. There are many databases from which this data
could be inferred, such as the ones associated to cellular phone
networks, credit cards, hotel reservations, flight reservation
databases, etc. But as almost all of them are private, most
researchers do not have access to them. Moreover, even if we
did have them, mixing this diversified information together to
get a human mobility model is a hard task by itself. Aside
from these particular difficulties, there is an intrinsic bias on
the databases if we are going to use them for diseases spread,
because it is reasonable to think that human behavior will
change or adapt in the presence of social awareness of a disease
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TABLE I. Human state according to the cycle day of the infection.

Cycle day (days) Human state

d0 The virus is transmitted by the bite of an infected mosquito.
d0 + τE(h) The human enters the infective stage.
d0 + τE(h) + j The human is infective and is able to transmit the virus with probability phm(j ), if bitten by a susceptible mosquito.

d0 + τE(h) + τi The human enters the recovered stage. No longer transmits dengue.

[19–28], and the inferences made on these databases cannot
take that into account. Moreover, there can be a social bias
because not everyone may use credit cards, go to hotels, etc.

Whether it is necessary to have detailed information on the
movements of each individual to build up a model, or if it
is only needed a coarse grain statistics of the mobility as a
whole is an open question which still has to be answered [29].
Several works tackle the issue of the correct description of the
mobility of human beings, relying on different methods and
databases [30–37].

As most works focusing on this topic analyze the effect
of human mobility in human-human transmitted diseases [21,
22,24–28,38–40], but not in vector borne ones [29,41,42], in
the present work we show a variation of our previous dengue
model which not only includes the flight of the mosquitoes
but also the mobility of the human beings. We then show the
key differences in the results between both our models and
conclude on the actual impact of human behavior on dengue.

In Sec. II we describe the characteristics of the epi-
demiological model we use in this work encompassing the
dynamics of the virus for humans and mosquitoes and the
dispersal dynamics for each. In Sec. III we present the results
of our numerical investigations which include the analysis
of the size and time evolution of the epidemics and the
morphological properties of the patterns of spatial distributions
of the infections for different mobility patterns and for different
densities of mosquitoes. Finally, conclusions are drawn in
Sec. IV.

II. THE EPIDEMIOLOGICAL MODEL

There are four ingredients in this model: the epidemiologi-
cal dynamics of the infected mosquitoes, the epidemiological
dynamics of the infected humans, and the mobility patterns
of the individuals and the mosquitoes. Each of these elements
will be discussed in the following sections.

A. Mosquitoes

The dengue virus does not have any effect on the vector;
as such, Aedes aegypti populations are independent of the

TABLE II. Levy-flight distribution parameters.

r0 (m) β κ (m)

1 200 1.65 1500
2 200 2. 1500
3 200 3. 1500
4 200 4. 1500

presence of the virus. In the present model mosquito popu-
lations are produced by the Aedes aegypti model [10] with
spatial resolution of one block using climatic data tuned to
Buenos Aires, a temperate city where dengue circulated in the
summer season 2008–2009 [43]. The urban unit of the city is
the block, approximately a square of (100 × 100 m). Because
of the temperate climate the houses are not open as is often
the case in tropical areas. Mosquitoes develop in the center
of the block, which often presents vegetation, and then
communicate to the houses of the block. The model then
assumes that mosquitoes belong to the block and not to
the houses and they blood feed with equal probability in
any human resident in the block. Aedes aegypti is assumed
to disperse seeking for places to lay eggs. The mosquito
population, number of bites per day, dispersal flights, and
adult mortality information per block are obtained from the
mosquito model [10]. The time step of the model has been
fixed at one day.

The virus might enter the mosquito when it bites a viremic
human. The virus is actually transmitted from the infected
human to the susceptible mosquito with a probability phm(j ),
dependent on the day j in the infectious cycle of the human
bitten.

The cycle continues with the reproduction of the virus
within the mosquito (extrinsic period) that lasts τm days. After
this reproduction period the mosquito becomes infectious and
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FIG. 1. (Color online) Distribution of jump length for different
mobility patterns. R1 (solid circles), R2 (open circles), Levy
flights with β = 1.65 (solid squares), β = 2 (solid triangles), β = 3
(crosses), and β = 4 (solid diamonds). As a comparison, the Levy
flight with parameters from the Barabasi distribution is shown with
asterisks [31].
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FIG. 2. (Color online) Top: Normalized mosquito population for
constant temperature (dashed) and seasonal variation (full). Bottom:
Temperature profile for constant and seasonal variation, as described
using the model as seen in [10]. Day 0 is set at the 1st of January.

transmits the virus when it bites with a probability pmh.
The mosquito follows a cycle, susceptible, exposed, infected
(SEI), and does not recover. Eventually mosquitoes die with
a daily mortality of 0.09 [9]. The adult female mosquito
population as produced by the Aedes aegypti simulation is
then split into susceptible, τm stages of exposed and one

TABLE III. Mean shortest path and clusterization for the human
mobility networks.

Network l (Blocks) C

R1(uniform) 1.779 0.220
Levy (β = 1.65) 2.006 0.286
Levy (β = 2) 2.112 0.303
Levy (β = 3) 2.532 0.349
Levy (β = 4) 3.092 0.380
R2 3.884 0.014

infective compartment according to their interaction with the
viremic human population and the number of days elapsed
since acquiring the virus. The mosquito population of each
block is not fixed, but instead mosquitoes move around in
terms of a simple diffusion process, as described in [10].

B. Humans

The evolution of the disease in one individual human, h,
evolves as follows.

In Table I, τE(h) stands for the intrinsic incubation time,
and τi is the viremic time of each individual. The cycle in
the human being is then of the form susceptible, exposed,
infected, recovered (SEIR). Each human has its own value
of τE which is assigned according to Nishiura’s experimental
distribution [44].
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FIG. 3. (Color online) Spatial distribution of the number of recovered individuals for three times, namely, 25, 81, and 173 days for the case
of a dengue epidemic driven only by the dispersal of mosquitoes. It can be seen that the pattern corresponds to a diffusive process and the
evolution is highly symmetric.
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As mentioned above, our analysis of the time evolution of
dengue fever is performed on a schematic city in which the
basic unit is the block and in each block a human population
of 100 individuals is placed. The human population of each
block is not fixed in the present work. In order to describe
the patterns of mobility of the humans we have adopted the
following schematic model: 50% of the population of each
block is randomly selected to be mobile, while the other 50%
is considered to remain in its original block during the whole
analysis. Each mobile individual is assumed to stay 2/3 of
the day in its original block, while the other 1/3 of the day
she/he will stay in a randomly assigned block according to
patterns described in the following. In each case, each of the
mobile individuals is assigned a fixed destination to which
it returns everyday. At the end of the day individuals return
to their original block. This random assignment is performed
according to certain rules that will characterize the mobility
pattern. Following recent works on human mobility, referred
to in the Introduction, we require that the movement of each
individual (a) should be highly predictable [45] and (b) the
distribution of the lengths of the displacements of the human
should follow a truncated Levy distribution [31] which reads

P (r) ∝ (r + r0)−β exp(−r/κ), (1)

with P (r) the probability of a human traveling a distance,
where r0, β, and κ are parameters that characterize the

distribution. In this work we have used the parameters
described in Table II.

Such a pattern of mobility of the humans is accomplished
by building a network with 50 links starting in each block.
The length of the link is distributed according to the proposed
length distribution and the final block is chosen at random
from those which can be reached by the link. Each link is
assigned to a mobile human at the start of the simulation. The
distribution of jump sizes for each type of underlying network
is shown in Fig. 1. In order to have reference mobility networks
we have also analyzed the case in which the end points of the
links are completely random (uniform distribution) which we
call R1. We have also investigated the case in which only one
individual per block performs a random jump, while the rest of
the mobile individuals in the block visit only their neighboring
blocks (R2).

Once the set of parameters is fixed, different underly-
ing networks are generated and a set of evolutions (typi-
cally a couple of thousand events) is performed for such
arrangements.

C. The networks

The networks built according to the above-mentioned
prescription can be analyzed in order to unveil their “small
world properties.” We have found it interesting to study the
geodesic path, i.e., the average minimum path between all the
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FIG. 4. (Color online) For the same times as in Fig. 3, the spatial distribution of recovered individuals when their mobility is modeled by a
truncated Levy flight with β = 3. It can be seen that, at variance with Fig. 3 the pattern is asymmetrical; moreover, the evolution is faster and
it can be seen that at t = 81 days a second focus is present.
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FIG. 5. (Color online) Radial correlation function as defined in
the text for the case in which the spatial evolution of the epidemics is
driven by the dispersal of mosquitoes only. Solid squares (red): t = 25
days; solid triangles (green): t = 57 days; crosses (blue): t = 89 days;
diamond (violet): t = 121 days: open circles (black): t = 153 days;
open squares (gray) t = 189 days. The pattern of variation is quite
regular as expected for a diffusive case.

cells.

l = 1

n(n − 1)

∑

i,j �=i

dij , (2)

with dij the minimum path between cells i and j , and n the
total number of nodes. The minimum path is defined as the
minimum number of links that are to be traversed in order to
travel from the original block to the destiny block. Therefore,
we see that it is a simple average over all the possible pairs of
blocks in the system of the minimum distance between each
pair.

Another interesting quantity to explore the characteristics
of a network is the so-called clustering. One of the usual
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FIG. 6. (Color online) Radial correlation function as defined in
the text for the case in which the humans move with the Levy-flight
(β = 3) distribution. Solid squares (red): t = 25 days; solid triangles
(green): t = 57 days; crosses (blue): t = 89 days; diamond (violet):
t = 121 days; open circles (black): t = 153 days; and open squares
(gray): t = 189 days.
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FIG. 7. (Color online) Radial correlation function as defined in
the text for the case in which only one human per block moves at
random, and the rest move to neighboring blocks (R2). Solid squares
(red): t = 25 days; solid triangles (green): t = 57 days; crosses (blue):
t = 89 days; diamond (violet): t = 121 days; open circles (black):
t = 153 days; and open squares (gray): t = 189 days.

definitions of this quantity is as follows: Given a node i with
ki nearest neighbors we define ci as

ci = 2

ki(ki − 1)
× (number of links between nearest neighbors), (3)

C = 1

n

∑

i

ci . (4)

In Table III we show the results of such a calculation.
We can see from Table I that the mean shortest path attains

a minimum for the completely random pattern of links and
grows as this pattern is replaced by the ones generated by the
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FIG. 8. (Color online) Ratio between the size of the biggest
cluster (in terms of the number of recovered humans) and the total
number of recovered. Diffusive (red solid squares), R1 (green solid
triangles), Levy (β = 1.65) (blue crosses), Levy (β = 4) (violet solid
diamonds), and R2 (black asterisks).
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Levy flights. We see that the broader the Levy flight, the larger
the average minimum path, as expected.

III. NUMERICAL CALCULATIONS

We have implemented the above described method (the
algorithm without human mobility has been fully described
in [18]) and have performed extensive calculations for different
initial conditions. The conditions are as follows: a rectangular
city of 20 × 20 blocks, mosquito breeding site densities,
different realizations of the underlying mobility networks, and
different seasonal conditions.

The number of breeding sites (BS) per block or den-
sity of breeding sites explored in these calculations are
50, 100, 200, 300, and 400. Larger numbers of breeding sites
are considered to be unrealistic for the system we have in mind,
i.e., the city of Buenos Aires. The human population density
and the size of the grid were chosen accordingly to the size
and human density of the neighborhoods typically infested
with Aedes aegypti in the city of Buenos Aires. Larger sizes
would require the consideration of spatial heterogeneities of
the human population and breeding site density. Moreover,
larger numbers of breeding sites do not add new information
to our calculations.

Another relevant condition that we have explored is the
underlying mobility network. For each value of the breeding
site densities, evolutions with different underlying networks
were performed.

Finally, we have considered two different seasonal condi-
tions: in Fig. 2 we show the population (top) and temperature
(bottom) profiles. In the seasonless situation, the temperature
remains fixed all along the evolution at 23 ◦C. In this case
the mosquito population remains basically constant all along
the evolution. In such a case the size of the epidemics is
determined by the dynamics of the infection itself subject to
the above-mentioned boundary conditions. If we adopt the
average temperature time distribution of Buenos Aires (see
Fig. 2 for details) the population of mosquitoes is a strongly
time dependent one; the size of the epidemics might then
be severely constrained. It has to be noted that an exposed
human (index case) is introduced near the center of the grid,
on January 1st.

In what follows we will focus on certain properties of the
epidemic system that are relevant for the understanding of
the characteristics of the time evolution. First we study the
morphology of the evolving spatial structure of the epidemics.
Then we study the final size and time span of the epidemics.
Then we include the results of the analysis of a system in which
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FIG. 9. Box-plot graphs of the final size of epidemics for different patterns of human mobility: (a) R1, (b) Levy (β = 1.65), (c) Levy
(β = 2), (d) Levy (β = 3), (e) Levy (β = 4), and (f) no movement.
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FIG. 10. Box-plot graphs of the final size of epidemics for different patterns of human mobility: (Left) R2 and (right) no human mobility.

the temperature is kept fixed at 23 ◦C. Finally, we study a new
quantity that we name the power of the epidemics.

A. Morphology of the spatial structure of the epidemics

It is expected that human mobility increases the size and
speed of the epidemics. This happens because each jump
(shortcut) when executed by a virus carrying individual may
induce the contagion of mosquitoes at the destination block
and then generates a new dispersal center for the illness.

In Fig. 3 we show the density of recovered individuals
at three relevant times for the case in which the dispersal
of dengue is driven by the diffusion of mosquitoes only. It
is seen that the population of recovered individuals displays
a symmetrical pattern as expected from a simple diffusion
process.

On the contrary, as seen in Fig. 4, the pattern for the case
in which the human jumps follow a Levy-flight distribution
is quite heterogeneous and it can be clearly seen that there is
more than one dispersal center.

This observation can be made more quantitative if we calcu-
late the radial correlation function defined as the probability of
finding at least one infected (recovered) individual (calculated
at the time at which all individuals have returned home) at
a block such that it can be reached by a jump of length r

from the place at which the initial infected individual was

located (which in this case is a block close to the center of the
city).

In what follows we show the result of calculating the radial
correlation function for three typical cases, namely, for the
mosquito-driven evolution, for the Levy-flight case with β =
3, and the case in which only one of the mobile individuals
performs random jumps (R2).

From Figs. 5–7 it is clearly seen that in the presence of
human mobility nearly all of the city can be reached by the
epidemic in short times. On the one hand, in the case of
mosquitoes only as a driving force, the correlation function
displays patterns expected for a traveling wave front. In the
other cases the wave front breaks early in the evolution and the
correlation function is different from zero almost everywhere
after a few days.

As we have seen in Figs. 3 and 4, the structure of the
spatial density of, say, humans in state R is highly symmetric
and compact for the case without human mobility. As human
mobility (of the kind considered in this work) is incorporated,
both the symmetry and the compactness are lost. In order to
explore this behavior in a more quantitative way we define a
cluster of recovered individuals in the following way. Given a
block i we will call it an occupied block if at least one member
of its original population is in the recovered state. A cluster (of
size larger than one) is a set of occupied blocks in which all
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FIG. 11. Comparison of the duration of the epidemic outbreaks for the different patterns of human mobility, 200 breeding sites/ha (Top)
and 400 breeding sites/ha (Bottom). (a) R1, (b) Levy (β = 1.65), (c) Levy (β = 2), (d) Levy (β = 3), (e) Levy (β = 4), (f) R2 and (g) no
movement.

constituents have at least a nearest or second-nearest neighbor
which belongs to the cluster. Then the block i will belong to
the cluster if the following relation is satisfied:

i ∈ C ⇐⇒ ∃ j ∈ C/i is a neighbor of j. (5)

We define the mass of a cluster as the number of recovered
individuals in the cluster. The results are displayed in Fig. 8.

It can be seen that for the case of simple diffusion all of the
mass is concentrated in the biggest cluster. On the other hand,
for the random (R1) case there is a time (around 50 days into
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FIG. 12. Comparison of the duration of epidemics for the different patterns of human mobility at a constant temperature of 23 ◦C
(400 breeding sites/ha). (a) R1, (b) Levy (β = 1.65), (c) Levy (β = 2), (d) Levy (β = 3), (e) Levy (β = 4), (f) R2 and (g) no movement.

the epidemic) at which only about 65% of the mass is in the
biggest cluster. This is due to the emergence of secondary foci
generated by infective humans who perform long jumps.

B. Sizes and time span of the epidemics

One of the main observables in this kind of problem is the
final size of the epidemics. In what follows we show in Fig. 9
a comparison of the final size of the epidemics in terms of the
box plots1 corresponding to different densities of the breeding
site densities for different patterns of human mobility. As
described above, we have two limiting situations: (a) the case
in which the moving humans perform jumps with completely
random destinations and (f) the case in which the dispersal of
the epidemics is only due to the diffusion of mosquitoes. In
between we have the patterns related to the length of the jump
given by a truncated Levy flight characterized by the different
set of parameters shown in Table II, i.e., β = 1.65, 2, 3, and
4 (keep in mind the smaller β, the closer to the random case).
The corresponding results are displayed in panels (b)–(e).

1The box plot (or sometimes called box-and-whisker plot) is a
simple method of displaying data, invented by Tukey [46]. To create
the box-and-whisker plots, we drew a box with ends at the lower
and upper quartiles and the statistical median as a horizontal line in
the box. Then we extended the “whiskers” to the farthest points of
the sample that were not outliers (i.e., that were within 1.5 times the
interquartile range). Finally, for every point more than 1.5 times the
interquartile range from the end of the box, a dot was drawn.

Finally, in Fig. 10 (left panel) we show the case in which
only one of the mobile humans in each block performs a
jump to a random destination while the others move to nearest
neighbors. For the sake of completeness we show in the right
panel the box plot corresponding to the mosquito-only-driven
evolution.

It is immediate to see that the effect of human mobility for
all the cases is to increase the final size of the epidemics with
respect to the case in which the mosquito diffusion is the only
driving force. Moreover, in the case of completely random
(uniform) mobility and for the Levy flight with β = 1.65 we
find that for the highest BS density proposed in this work, the
epidemic spreads over the whole population.

Figure 11 shows the duration distribution of the epidemics
as a function of the different patterns of human mobility
and for two constant breeding site densities of 200 (top) and
400 BS/ha (bottom) . For 200 BS/ha (top) all box plots present
a similar spread of data but a slight tendency to an increase of
the median from right to left (from the case without mobility
to the complete random pattern). Instead, for 400 BS/ha the
tendency is to decrease from right to left. [This behavior will
be properly discussed in terms of the power of the epidemics
(see below).]

C. Behavior of the model at constant temperature

Figure 12 shows the duration distribution of the epidemics
as a function of the different patterns of human mobility for
a constant breeding site density of 400 BS/ha and a constant
temperature of 23 ◦C. We see that the maximum duration of
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FIG. 13. (Color online) Comparison of the mean power of the
epidemics for the different patterns of human mobility (from left
to right: R1, Levy (β = 1.65), Levy (β = 2), Levy (β = 3), Levy
(β = 4), and R2), characterized by the average minimum path for
three conditions: (a) 400 BS/ha and a constant temperature of 23 ◦C,
(b) 400 BS/ha, and (c) 200 BS/ha for seasonal variations of
temperature.

the epidemic takes place for the case of no human mobility
and it shortens as the patterns of mobility of the individuals
tend to the completely random one. It is also interesting
to note that in this case the epidemic involves the whole
population in all cases.

D. Power of the epidemic

We define the mean power of the epidemic as the ratio
between the median of the final size of the epidemic and the
median of the duration of the epidemics.

Pm = MFS

Mτ

. (6)

Figure 13 shows the mean power for three conditions: (a)
400 BS/ha and a constant temperature of 23◦C, (b) 400 BS/ha
and seasonal variation of temperature, and (c) 200 BS/ha and
seasonal variation of temperature. The Pm grows with broader
jump length distributions and with higher BS densities. The
case of 400 BS/ha is higher for constant temperatures than
for seasonal variations of temperature. If we compare 400 and
200 BS/ha (for seasonal variations of temperature) we see the
same increasing tendency of Pm with human mobility, but this
value is higher for 400 BS/ha than for 200 BS/ha. (For the
case of 400 BS/ha and constant T the increase of the power of
the epidemic is a consequence of the reduction of its duration
as the pattern of human mobility approaches the fully random
case. At constant T all of the population gets infected. On
the other hand, when the temperature is not fixed it severely
constrains the mosquito population and then the increase in
Pm is mainly due to the increase of the size of the infected
population as the time span of the epidemics is only mildly
dependent on the driving force of the dispersal.

IV. SUMMARY AND CONCLUSIONS

In this work we have explored the effect of human mobility
on the dynamics of a vector borne infection. We have
added this characteristic of human behavior on an already
tested model of dengue dispersal when the dynamics is
driven by mosquitoes alone. We have analyzed the case of
a schematic city of 20 × 20 blocks with 100 individuals per
block.

We have considered two temperature profiles: one with
a simple constant temperature and one with a realistic
time distribution corresponding to the city of Buenos Aires,
Argentina.

Another variable in our analysis has been the number of
breeding cites in the city; we have considered 50, 100, 200,
300, and 400 breeding cites per block.

Human mobility has been described by superimposing
diverse kinds of networks in which links represent the daily
movement of humans. The distribution of lengths of these
links are derived from recent studies on human motion and in
particular, taking into account the finding that human behavior
is highly predictable. We have also considered reference
patterns, i.e., purely random motion and random motion
of a single human per block. We have explored different
observables such as size and duration of the outbreaks and
complementary morphological characteristics of the pattern
of recovered individuals.

From the analysis described above we can conclude that
human mobility strongly enhances the infection dispersal. As
can be clearly seen from Fig. 7, even for the case in which just
one individual per block can perform a long jump, the epidemic
spreads over all the “city” very early in the evolution at variance
with the case when the epidemic is driven by the mosquitoes
alone (Fig. 5). This effect can be traced to the fact that when
the disease dispersal is driven by mosquitoes alone we have a
single focus that expands due to the diffusive kind of dynamics
associated with mosquito dispersal. When human mobility is
taken into account, multiple foci appear as the time evolution
is followed. Human mobility increases both the size and the
speed of propagation of the outbreaks. The increase in speed is
particularly relevant when seasonality is present, such as in a
city like Buenos Aires, and this is taken into account. Because
of the low temperatures reached in winter, the population of
mosquitoes is severely reduced, as displayed in Fig. 2, so if
the dispersal happens at a slow pace, the reduction in the
population of mosquitoes (related to the decrease of the mean
temperature) is the responsible for the end of the epidemics.
We have found that for the motion patterns associated with the
shortest mean path lengths and 400 BS/ha the epidemics can
reach all of the population before this reduction. This feature
can be captured by the quantity “power of the epidemics”
defined as the quotient of the size of the epidemics divided
by its time span. This quantity displays a monotonic increase
as the mean length path of the networks describing the daily
human mobility pattern, decreases. These findings indicate
that human mobility might turn out to be the main driving
force in the epidemics dynamics. Both in the case of a fixed
temperature and that with seasonal variational temperatures,
human motion gives rise to faster and more widespread epi-
demics. Finally, these findings indicate that, when considering
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measures to fight epidemics dispersal human motion should
be one of the top concerns. We are presently exploring this
issue.

ACKNOWLEDGMENTS

We thank the University of Buenos Aires for support
through Grant No. X210.

[1] D. J. Gubler, Clin. Microbiol. Rev. 11, 480 (1998).
[2] WHO, Dengue and Dengue Hemorrhagic Fever, Fact

sheet N117 (2009) [http://www.who.int/mediacentre/factsheets/
fs117/en/index.html].

[3] T. Botari, S. G. Alves, and E. D. Leonel, Phys. Rev. E 83, 037101
(2011).

[4] E. A. C. Newton and P. Reiter, Am. J. Trop. Med. Hyg. 47, 709
(1992).

[5] D. A. Focks, D. G. Haile, E. Daniels, and G. A. Mount, J. Med.
Entomol. 30, 1003 (1993).

[6] D. A. Focks, D. G. Haile, E. Daniels, and G. A. Mount, J. Med.
Entomol. 30, 1018 (1993).

[7] D. A. Focks, D. G. Haile, E. Daniels, and D. Keesling, Am. J.
Trop. Med. Hyg. 53, 489 (1995).

[8] M. Otero and H. G. Solari, Math. Biosci. 223, 32 (2010).
[9] M. Otero, H. G. Solari, and N. Schweigmann, Bull. Math. Biol.

68, 1945 (2006).
[10] M. Otero, N. Schweigmann, and H. G. Solari, Bull. Math. Biol.

70, 1297 (2008).
[11] L. Esteva and C. Vargas, Math. Biosci. 150, 131 (1998).
[12] L. Esteva and C. Vargas, J. Math. Biol. 38, 220 (1999).
[13] L. Esteva and C. Vargas, Math. Biosci. 167, 51 (2000).
[14] L. M. Bartley, C. A. Donnelly, and G. P. Garnett, Trans. R. Soc.

Trop. Med. Hyg. 96, 387 (2002).
[15] P. Pongsumpun and I. M. Tang, Math. Comput. Modell. 37, 949

(2003).
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