402 research outputs found

    ISAAC, a framework for integrated safety analysis of functional, geometrical and human aspects

    Get PDF
    International audienceThis paper aims at presenting methods and tools that are developed in the ISAAC project (Improvement of Safety Activities on Aeronautical Complex Systems, www.isaac-fp6.org), a European Community funded project, to support the safety assessment of complex embedded systems. The ISAAC methodology proposes to base as much of the safety analyses as is feasibly possible on simulable and formally verifiable system models that include fault models and can be shared both by safety and design engineers. On one hand, tools were developed to support safety assessment of Simulink, SCADE, Statemate, NuSMV and AltaRica models. On the other hand, formal models are coupled with additional models to address the problems of common cause analysis and human error analysis

    Predicting the Filling of Ventilated Cavities Behind Spillway Aerators

    Get PDF
    Cavitation damage to spillway surfaces may be prevented with the use of aeration devices. These serve to introduce air in the layers close to the channel bottom in order to reduce cavitation erosion. Under some circumstances, the aerator can be drowned out and will cease to protect the spillway surface. This article analyses the conditions of filling. Then experimental data for ten aerator geometries are reviewed. Depending upon the aerator geometry, the cavity filling occurs when the Froude number is less than a critical value or when the ratio of the flow depth over the total offset is larger than a characteristic value

    The Second Transmembrane Domain of P2X7 Contributes to Dilated Pore Formation

    Get PDF
    Activation of the purinergic receptor P2X7 leads to the cellular permeability of low molecular weight cations. To determine which domains of P2X7 are necessary for this permeability, we exchanged either the C-terminus or portions of the second transmembrane domain (TM2) with those in P2X1 or P2X4. Replacement of the C-terminus of P2X7 with either P2X1 or P2X4 prevented surface expression of the chimeric receptor. Similarly, chimeric P2X7 containing TM2 from P2X1 or P2X4 had reduced surface expression and no permeability to cationic dyes. Exchanging the N-terminal 10 residues or C-terminal 14 residues of the P2X7 TM2 with the corresponding region of P2X1 TM2 partially restored surface expression and limited pore permeability. To further probe TM2 structure, we replaced single residues in P2X7 TM2 with those in P2X1 or P2X4. We identified multiple substitutions that drastically changed pore permeability without altering surface expression. Three substitutions (Q332P, Y336T, and Y343L) individually reduced pore formation as indicated by decreased dye uptake and also reduced membrane blebbing in response to ATP exposure. Three others substitutions, V335T, S342G, and S342A each enhanced dye uptake, membrane blebbing and cell death. Our results demonstrate a critical role for the TM2 domain of P2X7 in receptor function, and provide a structural basis for differences between purinergic receptors. © 2013 Sun et al

    An Excitable Cortex and Memory Model Successfully Predicts New Pseudopod Dynamics

    Get PDF
    Motile eukaryotic cells migrate with directional persistence by alternating left and right turns, even in the absence of external cues. For example, Dictyostelium discoideum cells crawl by extending distinct pseudopods in an alternating right-left pattern. The mechanisms underlying this zig-zag behavior, however, remain unknown. Here we propose a new Excitable Cortex and Memory (EC&M) model for understanding the alternating, zig-zag extension of pseudopods. Incorporating elements of previous models, we consider the cell cortex as an excitable system and include global inhibition of new pseudopods while a pseudopod is active. With the novel hypothesis that pseudopod activity makes the local cortex temporarily more excitable – thus creating a memory of previous pseudopod locations – the model reproduces experimentally observed zig-zag behavior. Furthermore, the EC&M model makes four new predictions concerning pseudopod dynamics. To test these predictions we develop an algorithm that detects pseudopods via hierarchical clustering of individual membrane extensions. Data from cell-tracking experiments agrees with all four predictions of the model, revealing that pseudopod placement is a non-Markovian process affected by the dynamics of previous pseudopods. The model is also compatible with known limits of chemotactic sensitivity. In addition to providing a predictive approach to studying eukaryotic cell motion, the EC&M model provides a general framework for future models, and suggests directions for new research regarding the molecular mechanisms underlying directional persistence

    RNA splicing. The human splicing code reveals new insights into the genetic determinants of disease

    Get PDF
    To facilitate precision medicine and whole genome annotation, we developed a machine learning technique that scores how strongly genetic variants affect RNA splicing, whose alteration contributes to many diseases. Analysis of over 650,000 intronic and exonic variants reveals widespread patterns of mutation-driven aberrant splicing. Intronic disease mutations alter splicing nine times more often than common variants, and missense exonic disease mutations that least impact protein function are five times more likely to alter splicing than others. Tens of thousands of disease-causing mutations are detected, including those involved in cancers and spinal muscular atrophy. Examination of intronic and exonic variants found using whole genome sequencing of individuals with autism reveals mis-spliced genes with neurodevelopmental phenotypes. Our approach provides evidence for causal variants and should enable new discoveries in precision medicine

    Tissue distribution of the laminin β1 and β2 chain during embryonic and fetal human development

    Get PDF
    Laminins are the major glycoproteins present in all basement membranes. Previously, we showed that perlecan is present during human development. Although an overview of mRNA-expression of the laminin β1 and β2 chains in various developing fetal organs is already available, a systematic localization of the laminin β1 and β2 chains on the protein level during embryonic and fetal human development is missing. Therefore, we studied the immunohistochemical expression and tissue distribution of the laminin β1 and β2 chains in various developing embryonic and fetal human organs between gestational weeks 8 and 12. The laminin β1 chain was ubiquitously expressed in the basement membrane zones of the brain, ganglia, blood vessels, liver, kidney, skin, pancreas, intestine, heart and skeletal system. Furthermore, the laminin β2 chain was present in the basement membrane zones of the brain, ganglia, skin, heart and skeletal system. The findings of this study support and expand upon the theory that these two laminin chains are important during human development

    Different modes of state transitions determine pattern in the Phosphatidylinositide-Actin system

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In a motile polarized cell the actin system is differentiated to allow protrusion at the front and retraction at the tail. This differentiation is linked to the phosphoinositide pattern in the plasma membrane. In the highly motile <it>Dictyostelium </it>cells studied here, the front is dominated by PI3-kinases producing PI(3,4,5)tris-phosphate (PIP3), the tail by the PI3-phosphatase PTEN that hydrolyses PIP3 to PI(4,5)bis-phosphate. To study de-novo cell polarization, we first depolymerized actin and subsequently recorded the spontaneous reorganization of actin patterns in relation to PTEN.</p> <p>Results</p> <p>In a transient stage of recovery from depolymerization, symmetric actin patterns alternate periodically with asymmetric ones. The switches to asymmetry coincide with the unilateral membrane-binding of PTEN. The modes of state transitions in the actin and PTEN systems differ. Transitions in the actin system propagate as waves that are initiated at single sites by the amplification of spontaneous fluctuations. In PTEN-null cells, these waves still propagate with normal speed but loose their regular periodicity. Membrane-binding of PTEN is induced at the border of a coherent PTEN-rich area in the form of expanding and regressing gradients.</p> <p>Conclusions</p> <p>The state transitions in actin organization and the reversible transition from cytoplasmic to membrane-bound PTEN are synchronized but their patterns differ. The transitions in actin organization are independent of PTEN, but when PTEN is present, they are coupled to periodic changes in the membrane-binding of this PIP3-degrading phosphatase. The PTEN oscillations are related to motility patterns of chemotaxing cells.</p

    Genomic innovations, transcriptional plasticity and gene loss underlying the evolution and divergence of two highly polyphagous and invasive <i>Helicoverpa</i> pest species

    Get PDF
    BACKGROUND: Helicoverpa armigera and Helicoverpa zea are major caterpillar pests of Old and New World agriculture, respectively. Both, particularly H. armigera, are extremely polyphagous, and H. armigera has developed resistance to many insecticides. Here we use comparative genomics, transcriptomics and resequencing to elucidate the genetic basis for their properties as pests. RESULTS: We find that, prior to their divergence about 1.5 Mya, the H. armigera/H. zea lineage had accumulated up to more than 100 more members of specific detoxification and digestion gene families and more than 100 extra gustatory receptor genes, compared to other lepidopterans with narrower host ranges. The two genomes remain very similar in gene content and order, but H. armigera is more polymorphic overall, and H. zea has lost several detoxification genes, as well as about 50 gustatory receptor genes. It also lacks certain genes and alleles conferring insecticide resistance found in H. armigera. Non-synonymous sites in the expanded gene families above are rapidly diverging, both between paralogues and between orthologues in the two species. Whole genome transcriptomic analyses of H. armigera larvae show widely divergent responses to different host plants, including responses among many of the duplicated detoxification and digestion genes. CONCLUSIONS: The extreme polyphagy of the two heliothines is associated with extensive amplification and neofunctionalisation of genes involved in host finding and use, coupled with versatile transcriptional responses on different hosts. H. armigera's invasion of the Americas in recent years means that hybridisation could generate populations that are both locally adapted and insecticide resistant
    corecore