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Abstract

Introduction—Advancing whole-genome precision medicine requires understanding how gene 

expression is altered by genetic variants, especially those that are outside of protein-coding 

regions. We developed a computational technique that scores how strongly genetic variants alter 

RNA splicing, a critical step in gene expression whose disruption contributes to many diseases, 

including cancers and neurological disorders. A genome-wide analysis reveals tens of thousands 

of variants that alter splicing and are enriched with a wide range of known diseases. Our results 

provide insight into the genetic basis of spinal muscular atrophy, hereditary nonpolyposis 

colorectal cancer and autism spectrum disorder.

Methods—We used machine learning to derive a computational model that takes as input DNA 

sequences and applies general rules to predict splicing in human tissues. Given a test variant, our 

model computes a score that predicts how much the variant disrupts splicing. The model was 

derived in such a way that it can be used to study diverse diseases and disorders, and to determine 

the consequences of common, rare, and even spontaneous variants.
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Results—Our technique is able to accurately classify disease-causing variants and provides 

insights into the role of aberrant splicing in disease. We scored over 650,000 DNA variants and 

found that disease-causing variants have higher scores than common variants and even those 

associated with disease in genome-wide association studies. Our model predicts substantial and 

unexpected aberrant splicing due to variants within introns and exons, including those far from the 

splice site. For example, among intronic variants that are more than 30 nucleotides away from a 

splice site, known disease variants alter splicing nine times more often than common variants; 

among missense exonic disease variants, those that least impact protein function are over five 

times more likely to alter splicing than other variants.

Autism has been associated with disrupted splicing in brain regions, so we used our method to 

score variants detected using whole genome sequencing data from individuals with and without 

autism. Genes with high scoring variants include many that have been previously linked with 

autism, as well as new genes with known neurodevelopmental phenotypes. Most of the high 

scoring variants are intronic and cannot be detected by exome analysis techniques.

When we score clinical variants in spinal muscular atrophy and colorectal cancer genes, up to 94% 

of variants found to disrupt splicing using minigene reporters are correctly classified.

Discussion—In the context of precision medicine, causal support for variants that is 

independent of existing studies is greatly needed. Our computational model was trained to predict 

splicing from DNA sequence alone, without using disease annotations or population data. 

Consequently, its predictions are independent of and complementary to population data, genome-

wide association studies (GWAS), expression-based quantitative trait loci (QTL), and functional 

annotations of the genome. As such, our technique greatly expands the opportunities for 

understanding the genetic determinants of disease.

Regulatory cis-elements comprise a significant portion of the human genome (1, 2) and form 

the ‘regulatory code’ that directs gene expression, depending on cellular conditions. 

Development of computational ‘regulatory models’ that can read the code for any gene and 

predict relative concentrations of transcripts (3–5) raises the possibility that these models 

can be used to identify variants that lead to misregulated gene expression and human disease 

(6). Unlike many existing approaches (7–9), regulatory models do not suffer from the 

ascertainment biases inherent in databases of disease annotations.

A computational model of splicing

Misregulation of splicing contributes significantly to human disease (10), so we developed a 

computational model of splicing regulation that can be applied to any sequence containing a 

triplet of exons (Fig. 1a). The method extracts DNA sequence features, or cis-elements and, 

for a given cell type, uses them to predict the percent of transcripts with the central exon 

spliced in (PSI or Ψ), along with a Bayesian confidence estimate. To train the model, 10,689 

exons that have evidence of alternative splicing were mined and 1393 sequence features 

were extracted from each exon and its neighboring introns and exons. RNA-seq data from 

the Illumina Human Body Map 2.0 project (NCBI GSE30611) was used to estimate Ψ for 

each exon in each of 16 human tissues, and the model was trained to predict Ψ given the 

tissue type and the sequence features. Unlike existing methods (3, 11, 12), our 

computational model was derived using human data, incorporates over 300 new sequence 
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features, and outputs real-valued absolute Ψ values for individual tissues, rather than 

categorical Ψ values for tissue differences (Supporting Online Materials Sec. S1-S4).

We observe good agreement (R2=0.65) between code-predicted Ψ and RNA-seq assessed Ψ 

for exons that are held out during training (Fig. 1b). On the task of classifying high (Ψ≥67%) 

versus low (Ψ≤33%) inclusion, the area under the receiver-operator characteristic curve 

(AUC) is 95.5%. For quality control, we only examined exon-tissue combinations 

(n=56,784) for which the standard deviation of the RNA-seq assessed Ψ is less than 10%, 

and cross-validation was used to ensure that test cases were not used during training (Sec. 

S5.1 and Table S3). The prediction accuracy is even higher (R2=0.94, AUC=99.1%) for the 

50% of predictions with highest confidence (n=28,392). The model is robust and accurate 

for categories of data that were not included during training, including genes with low 

expression, genes from excluded chromosomes, tissue differences in splicing levels, tissues 

from independent sources, and RT-PCR quantified splicing levels (Sec. S5.1-S5.2).

We next investigated whether our computational model accounts for the effects of known 

RNA-binding proteins (RBPs), which are key splicing regulators. We compared how well 

the calculated RBP binding affinity from Ray et. al. (13) correlates with the observed 

variation in splicing, and found 2080 strong correlations (P<0.01, multiple hypothesis-

corrected permutation test). Then we correlated the RBP binding affinities with the residual 

splicing activity not captured by the code, which was obtained by subtracting the code 

predictions from the observed values. The number of strong correlations dropped to 60, 

suggesting that our computational model mostly encompasses the collective effects of 

known RBPs (Fig 2 and Sec. S5.3).

Our model also accounts for the effects of disruptions in trans-acting factors. We examined 

knockdown data for Muscleblind-like (MBNL) RBPs in Hela cells (14). There are 664 

exons that exhibit a significant change in RNA-seq assessed Ψ upon MBNL knockdown and 

26,457 exons whose levels do not change significantly upon knockdown. When we scored 

exons by how much the model predicts Ψ will change when the MBNL features are removed 

in silico, we found that MBNL-regulated exons frequently have higher scores (P=6.2e-57, 

Kolmogorov-Smirnov or KS test, 31.4%). The computational model predicts the effects of 

MBNL knockdown more accurately than directly examining MBNL binding sites (10.9% 

improvement in the AUC, P=1.4e-14, Bootstrap test, Sec. S5.4).

In contrast to correlation-based linear methods, where sequence features act independently, 

our computational model incorporates crucial context-dependent effects. When we derived 

tissue-specific linear models by searching over the most predictive set of sequence features, 

they always accounted for significantly less data variance (R2<0.49) than our context-

dependent model (R2=0.65). Importantly, we found that in our model, the same feature can 

influence Ψ differently in different cis-contexts established by other sequence features and in 

different trans-contexts specified by cell type (Sec. S6.1 and Figs. S14-S15). For instance, 

40 of the 100 most strongly predictive sequence features frequently switch the direction of 

their effect in at least one tissue, depending on cis-context.
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We wondered whether our computational model could accurately predict differences in 

splicing levels between individuals using only their genotype. We analyzed genotype and 

RNA-seq data for lymphoblastoid cell lines from four individuals (15) and used our model 

to predict PSI in white blood cells, for pairs of individuals that have differing SNPs (Sec. 

S5.5). When we examined 99 exons that exhibit a significant difference in RNA-seq 

assessed PSI between pairs of individuals and whose predicted difference in PSI was above 

a noise threshold, we found that our technique correctly predicted the direction of change in 

73% of cases (P=3.5e-6, Binomial test).

Genome-wide analysis of splicing misregulation and disease

To assess the implications of genetic variation on splicing regulation, we mapped 658,420 

single nucleotide variations (SNVs) to exonic and intronic sequences containing the 

regulatory code for ∼120,000 exons in ∼16,000 genes (Sec. S7). Of these SNVs, 543,525 

are single nucleotide polymorphisms (SNPs), which are common (minor allele frequency or 

MAF>1%) (16), whereas 114,895 have been linked to diseases and are mostly rare 

(MAF<1%) (17). To score the effect of every SNV on splicing regulation, we applied the 

regulatory model to the sequence with and without the SNV and computed the difference in 

predicted splicing level, ΔΨ, for each tissue (Fig. 3a). We studied the effects of SNVs using 

the largest value of ΔΨ across tissues, as well as a ‘regulatory score’ that aggregates the 

magnitude of ΔΨ across tissues (Sec. S7.1).

The code provides an unprecedented view of the impact of SNVs on splicing regulation 

(Fig. 3b). It reveals 20,813 unique SNVs that disrupt splicing (|ΔΨ|≥5%, listed in Table S4), 

frequently in a way that depends on cis-context (Sec. S7.6 and Fig. S21). Diverse methods 

of validation support the functional impact of these disruptions. Intronic SNVs that are close 

to splice sites frequently cause misregulation, but 465 intronic SNVs that are more than 30nt 

from any splice site also induce substantive changes. Within exons, significant deviations 

are induced by 9,525 nonsense SNVs and 1273 missense SNVs, but also for 579 

synonymous SNVs, a result supported by recent data showing that synonymous mutations 

frequently contribute to human cancer (18).

To explore the causal implications of high-scoring SNVs in the context of disease, we 

examined whether disease SNVs are predicted to disrupt splicing (|ΔΨ|≥5%) more 

frequently than common SNPs, of which a large portion are thought to be under neutral 

selection (19). We plotted the locations and ΔΨ for 81,608 disease SNVs located up to 100nt 

into exons or up to 300nt into their adjacent introns (Fig. 3c).

Our technique reveals widespread processes whereby disease SNVs cause misregulation of 

splicing. Databases of disease annotations were not used to train our model, so it is not 

susceptible to overfitting already discovered disease SNVs or inherent ascertainment biases 

(7–9).

We found that intronic disease SNVs that are more than 30nt from any splice site are 9.0 

times more likely to disrupt splicing regulation than common SNPs in the same region 

(P=5.1e-68, two sample t-test, n=1639 and n=24,535). Within exons, synonymous disease 
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SNVs are on average 9.3 times more likely to disrupt splicing regulation than synonymous 

SNPs (P=8.0e-116, two sample t-test, n=2652 and n=4510).

Missense SNVs have previously been examined mainly in the context of how they alter 

protein function (7). Our method enables the exploration of their effects on splicing 

regulation. We found that missense disease SNVs are not more likely to disrupt splicing than 

missense SNPs (P=0.22, two-sample t-test, n=58,918 and n=2981), which contradicts 

previously published evidence that they do (P≈0.05) (9). However, when we examined 789 

and 1757 missense disease SNVs that analysis using Condel (20) indicates minimally and 

maximally alter protein function, we found that SNVs that minimally alter protein function 

are on average 5.6 times more likely to disrupt splicing regulation (P=4.5e-14, two-sample t-

test), elucidating a ‘disease by misregulation’ mechanism (Sec. S7.5).

We found that within introns, the regulatory scores of 457 GWAS-implicated SNPs that 

mapped to regulatory regions (21) are quite similar to non-GWAS SNPs (P=0.27, KS test, 

n=262,804), whereas the scores of disease SNVs are significantly higher (P<1e-320, KS 

test, 71.2%, n=280,638). Less than 5% of GWAS SNPs are estimated to cause misregulation 

in a fashion similar to disease SNVs (Sec. S7.4), indicating that our method can detect 

disease SNVs that are not detectable by GWAS (Fig. 4a).

In further support of the functional specificity of our approach, we found that the regulatory 

scores of disease SNVs with strong experimental evidence are substantially higher than 

those with weak or indirect evidence (Fig. 4b).

Next, we used the computational model to analyze three human diseases with different 

characteristics: spinal muscular atrophy (autosomal recessive single gene), nonpolyposis 

colorectal cancer (oligogenic) and autism spectrum disorder (multigenic).

Spinal muscular atrophy (SMA)

To explore misregulation of SMN1/2, which is associated with spinal muscular atrophy, a 

leading cause of infant mortality (22), we used the computational model to simulate the 

effects of over 700 known and novel mutations around exon 7 in SMN1/2. We first 

examined the regulatory consequences of four nucleotides that differ between SMN1 and 

SMN2, labeled C6T, G-44A, A100G, and A215G in Fig. 5a, where “-44” indicates 44nt 

upstream of the 3′ splice site. These substitutions are known to lead to decreased inclusion 

of exon 7 in SMN2 and loss of function.

Our method predicts that exon 7 skipping is predominantly caused by C6T and to a much 

lesser degree by G-44A, while A100G and A215G are predicted to not significantly impact 

splicing. The prediction for C6T is consistent with previously published mutagenesis data 

(22). Mutagenesis data indicate that A100G enhances skipping by 36% to 63% (23) in the 

SMN2 context. Using a Z-score threshold of 1, our computational model also predicts a 

small but significant skipping effect of A100G in the SMN2 context. We used minigene 

reporters to test our predictions and found that in all cases, they are supported by the 

experimental data, including the negligible effect of A100G mutation in the SMN1 context 
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(red, Fig. 5b). Further, our prediction for G-44A is consistent with antisense oligonucleotide 

experiments indicating that it overlaps with a splicing suppressor (24).

To explore mutations that may result in gain of SMN2 function, we simulated the regulatory 

effects of all 420 possible point mutations in 140nt of intronic sequence upstream of exon 7 

(Fig. 5b). Minigene reporter data for the top three predictions confirm that none of them 

exhibit decreased inclusion and two of them cause increased inclusion (green, Fig. 5b). 

Together, the predictions for SMN1 and SMN2 mutations (Fig. 5c) have a Spearman 

correlation of 0.82 with the experimental data (P=0.017, n=7, one-sided permutation test).

We generated a literature-curated compendium of mutagenesis data for 85 variations located 

in three exonic regulatory regions previously tested using in vivo selection, plus an intronic 

region. When our model is used to predict ΔΨ for these cases (Fig. 5d), the direction of 

regulation is correct in 85% of cases and the Spearman correlation is 0.74 (P=5.7e-16, one-

sided permutation test). We additionally used our method to simulate ΔΨ for 101 mutants 

selected in vivo to increase Ψ, with point mutations in the first six nucleotides in exon 7 and 

also in the entire exon (22). Increases in Ψ are correctly predicted in 98.7% of the 78 high 

confidence cases (Table S6).

Nonpolyposis colorectal cancer

Lynch syndrome, or hereditary nonpolyposis colorectal cancer accounts for ∼3% of 

colorectal cancer cases (25) and nearly 90% of reported variations occur in the DNA 

mismatch repair (MMR) genes MLH1 and MSH2 (26). Numerous studies have shown that 

misregulation of splicing accounts for a major portion of cases (27), but also that existing 

computational predictions for variations that do not directly disrupt splice sites are not 

correlated with experimental data (27, 28). It has been suggested that this is because existing 

tools do not take interactions between regulatory features into account (28).

We evaluated 977 SNVs, 156 of which are nonsense, in MLH1 and MSH2 (26) using our 

computational model and found that high levels of misregulation are predicted (Fig. 6a and 

Sec. S9, Tables S7-S8): 32.3% of SNVs exhibited a ΔΨ that was larger than that of 95% of 

common SNVs (P=4.2e-135, one-sided binomial test). To avoid bias, MLH1, MSH2, and 

their variants were not included during model training. Additionally, the majority of 

predictions are concordant with published RT-PCR data (Tables S9-S10). When predicted 

ΔΨ is used to classify increased skipping versus no change for SNVs where there is RT-PCR 

data available, AUCs of 92.4% and 93.8% (Fig. 6b) are achieved for 134 MLH1 mutants and 

73 MSH2 variants (P=2.8e-24 and P=8.7e-15, one-sided permutation tests, Sec. S9).

To further test the specificity of our method, we mapped 80 common SNPs to MLH1 and 

MSH2 and compared their regulatory scores to those of the SNVs found in tumors. Common 

SNPs had significantly lower scores (P=8.1e-11, KS test, 40.0%, n=1058), indicating that 

our method successfully detects causal variants (Sec. S9).

Our method sheds light on unresolved hypotheses for the mechanisms of specific mutations. 

Three missense substitutions in the second nucleotide of codon 659 in exon 17 of MLH1 are 

observed in Lynch syndrome patients: c.1976G>T, c.1976G>C, and c.1976G>A Evidence 

Xiong et al. Page 6

Science. Author manuscript; available in PMC 2016 January 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



indicates that these likely do not change protein function, suggesting that the mechanism is 

splicing misregulation (29-31). Indeed, RT-PCR data indicates that c.1976G>T and c.

1976G>C induce increased exon skipping (29). However, previous computational analyses 

either fail to predict misregulation (30) or, because the mutations increase the strength of an 

exonic splicing enhancer, erroneously predict increased exon inclusion (32) (Sec. S9). We 

applied our computational model and found that it confidently and correctly predicts 

increased skipping in all three cases (Table S10), and also correctly predicts that c.1976G>C 

has a stronger effect than c.1976G>T. We can thus hypothesize that c.1976G>A induces 

aberrant splicing and renders the translated protein dysfunctional.

Autism spectrum disorder (ASD)

ASD is a neurodevelopmental condition characterized by language deficiency, restricted and 

repetitive interests, and challenges in social skills. It is highly heritable, but its significant 

clinical and genetic heterogeneity has complicated the identification of all etiologic genetic 

variants (33). Through the study of rare genetic variants, ∼100 genes have now been 

implicated in ASD (34) and these are estimated to account for ∼20% of the etiologic cause 

in different cohorts examined (35, 36). More recent studies using whole genome sequencing 

revealed higher yields of contributing mutations but these studies have only focused on 

exonic regions (37). Common genetic variants may also have an effect in ASD, but few 

studies replicate the same loci (38). Splicing misregulation as a cause of ASD is evidenced 

by examples of genes involved in ASD, such as Neurexins and Neuroligins, that are 

extensively alternatively spliced (39), and recent transcriptomic analyses showing consistent 

deviations in alternative splicing patterns in the cortical regions of ASD cases (40).

To identify genes with SNVs that potentially cause splicing misregulation in ASD cases, we 

used our regulatory model to analyze the genomes of five idiopathic ASD cases, which do 

not have ASD-associated cytogenetic markers such as chromosome 15q duplication (Sec. 

S10.1). We sequenced these genomes using brain samples from the Autism Tissue Program 

(41), and selected the genomes of twelve controls consisting of three subgroups of four 

controls each. As a control, we clustered the ASD and control genomes using genome-wide 

genetic similarity and verified that they cluster by ethnic group, but not by disease condition 

or other covariates, indicating that overall, the ASD and control SNVs are not grossly biased 

by non-disease effects (Sec. S10.2 and Fig. S27).

The genomes of cases and controls were scanned for SNVs (Sec. S10.1) and, to focus our 

analysis on rare variants, we only kept high quality homozygous and heterozygous-reference 

(in which one allele matches the reference allele) SNVs that do not correspond to common 

SNPs. This resulted in a median of ∼42,000 SNVs per subject.

We examined genes with high expression in brain tissues, which are more frequently 

implicated in ASD, and did not find an enrichment of SNVs in ASD cases versus controls 

(P=0.24, Fisher's exact test, Sec. S10.7). Aiming to separate causal SNVs from non-causal 

ones, we identified SNVs that our technique predicts will cause splicing misregulation (Fig. 

7a). All variants were mapped onto the splicing code within canonical Ensembl transcripts, 

resulting in 15,739 SNVs, whose code-predicted ΔΨs were then computed (Tables S13.1-
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S13.4). We identified genes with misregulated splicing in cases and also in controls by 

applying a threshold to ΔΨ equal to the 2nd and also the 3rd percentile of ΔΨ for common 

SNPs (Fig. 7b and Sec. S10.4), and genes misregulated in both cases and controls were 

removed from further analysis.

Among genes that our technique predicts are misregulated in ASD cases (n=171), 27% have 

high expression in brain, whereas for controls (n=249), only 13% have high expression in 

brain (P=3.8e-4, Fisher's exact test). When we examined genes with low or no expression in 

brain tissues, we did not observe significant differences (Sec. S10.7). Further, when we 

make the threshold used to identify misregulated genes more stringent, we see that 

enrichment of ASD-related functions is amplified (Fig. 7c). These results open the door to 

discovering new genetic determinants of ASD, and also suggest that more generally, our 

splicing model can be used to sift through variants to support precision medicine and whole 

genome variant studies.

We tested Gene Ontology annotation and pathway based gene-sets for enrichment in 

misregulated genes; to account for biases such as gene length, we tested the gene enrichment 

in ASD genomes compared to control genomes. Interestingly, we found categories related to 

synaptic transmission, neuron projection and growth (Fig 8). Gene permutation analysis 

shows that enrichment in neurodevelopmental gene sets is significant (empirical FDR < 

4%). In addition, repeating the analysis for a subset of control genomes versus another 

subset of control genomes did not produce any significant results, and top-ranking gene sets 

were not neurodevelopmental.

We found 39 genes with predicted splicing alterations that are associated with at least one 

enriched function and we additionally prioritized 19 of these genes as more compelling ASD 

disease candidates, because they are known to have neurological, neurobehavioral or 

neurodevelopmental phenotypes in human (HPO and OMIM) or mouse (MGI/MPO) (Table 

S16). The analysis reveals interesting candidates and only CTNND2 and PTEN have been 

previously implicated or suggested to play a role in ASD (34, 42). Our study suggests new 

candidate ASD genes, including ALDH5A1, GLI2, GRIN1, KCNH3, LAMA2, and NISCH, in 

addition to other possibilities. Our results are robust to choices made in the analysis (Sec. 

S10.5) and can be combined with other approaches, e.g. (43), to develop diagnostic 

techniques.

Discussion

Our results from profiling the genome-wide effects of over 650,000 SNVs shed light on how 

genetic variation impacts splicing. Further, our in-depth results from the analysis of 

thousands of variations in diverse disorders, including spinal muscular atrophy, 

nonpolyposis colorectal cancer and autism, exemplify the wide range of applicability of our 

technique and provide insights into the genetic determinants of these diseases.

In the context of precision medicine, the importance of providing causal evidence for 

putative variants with the goal of avoiding the effects of confounding factors, such as 

population stratification, has recently been underscored (44, 45). The ability of our 
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computational technique (available at http://tools.genes.toronto.edu, also see Sec. S11) to 

provide regulatory evidence for a variant's disruptiveness is supported by accurate 

predictions for test sequences that were not used during training, discrimination of disease 

variants even though the model was not trained using disease labels, and strong correlation 

between code-predicted changes in splicing induced by mutations and experimental data 

using minigene reporters.

Our approach contrasts with techniques that use functional annotations of the genome (2, 8, 

46), tools that are trained using existing disease annotations and thus suffer from overfitting 

to known mutations or severe selection bias (7–9, 47, 48); genome-wide association studies 

(GWAS) (49, 50); and expression-based quantitative trait loci (QTL) (15, 51). To compare 

our method with using functional genome annotations, we removed missense exonic SNVs 

that may affect phenotype without changing splicing regulation, yielding 26,403 SNVs that 

map to canonical Ensembl transcripts. At a false positive rate of 0.1%, we found that scoring 

SNVs by their overlap with functional annotations detects 1.4% of disease variants, whereas 

our method is 25 times more sensitive and detects 35.9% of disease variants (Sec. S7.2).

Compared to state of the art methods that examine perturbations of motifs and genome 

annotations, but that do not account for changes in gene regulation (47, 48), our method is 

nearly ten times more sensitive in each of several sequence regions (Fig. S18).

While our technique does not directly detect variants associated with a phenotype of interest, 

when it is combined with phenotype-matched genotype data, such as those generated by 

whole genome sequencing, it can detect variants relevant to phenotype, as demonstrated by 

our autism analysis.

In contrast to GWAS (49), splicing QTL analysis (51), and other methods that use allele 

frequencies within populations to score variants (46), our technique does not directly depend 

on allele frequencies, but instead detects variants that are predicted to cause changes in 

regulation. Consequently, it can be applied to rare and even spontaneous variants. Also, our 

approach can be combined with population-based methods so as to amplify their specificity 

and identify causal variants in the context of specific diseases, either by providing more 

refined scores or by scoring variants in the same linkage disequilibrium block as a GWAS- 

or QTL-identified non-causal SNP. When we evaluated 453 splicing QTLs that were 

identified using blood samples and the genotypes of 922 individuals (51), we found that a 

subset of splicing QTLs had high regulatory scores, as computed using our method, 

compared to those of common SNPs in general (P=4.2e-10, KS test, 15.4%).

One concern is that our method successfully detects rare disease variants because they are 

rare, rather than because they cause disease. However, our method was derived without 

using disease mutation data, so it does not directly depend on allele frequency. Indeed, when 

we separately analyzed rare variants (0.1%<MAF<1%), moderately common variants 

(1%<MAF<5%), and disease variants (annotated in HGMD), we found that the disease 

variants have significantly different regulatory scores than the rare and common variants, 

but the distribution of regulatory scores is indistinguishable for rare and common variants. 

These results indicate that the scores generated by our method for rare disease variants are 
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high because of their disease effect, not simply because they are rare. (See Sec. S7.7 for 

details.)

Potential sources of prediction error include unaccounted for RNA features, inaccuracies in 

computed features, imperfect modeling of splicing levels, and limitations due to a focus on 

cassette splicing. Even so, the method described here performs extraordinarily well, as 

assessed both by validation of splicing prediction using several diverse sources of data, and 

by its ability to detect disease mutations.

We anticipate that it will be important to seek regulatory models that encompass other major 

steps in gene regulation, including chromatin dynamics, transcription, polyadenylation, 

mRNA turnover, protein synthesis, and protein stabilization. These processes influence 

transcript levels in a highly integrated manner within the cell, so modeling them jointly 

should lead to more accurate predictions. Moreover, evidence suggests that DNA elements 

previously thought to be pertinent to only one regulatory process may in fact span several 

steps in the regulatory chain. Examples include nucleosome positioning, epigenetic 

modifications, and chromatin interactions (52).

Material and Methods

Details of all datasets, learning algorithms, statistical analyses, experimental validation, and 

web tool implementation are provided in the supplementary online material. Here we 

provide a brief summary. The human splicing code was assembled using on 1393 carefully 

designed sequence features extracted from each of the 10,689 alternatively spliced exons 

and their corresponding PSI values profiled in 16 normal tissues from human BodyMap 2.0 

(NCBI GSE30611) RNA-seq data. The features of an exon were extracted from its proximal 

genomic sequences, including exon/intron lengths, splice site signals, counts of splicing 

factor motifs, 1- to 3-mer frequencies, retrovirus repeats, nucleosome positioning, RNA 

secondary structures, etc. The computational model was learned using a Bayesian machine 

learning algorithm, with extreme care exercised to prevent overfitting. Since the model was 

built using the reference genome only, its performance was first validated using held out 

data, including additional RNA-seq (53), RT-PCR, RBP binding (13), and MBNL 

knockdown (14) datasets. The model was further evaluated using genome-wide SNVs, 

including common SNPs in dbSNP135 (16), point mutations in HGMD (17), and rare 

variants from ANNOVAR (54). Finally, the splicing model was applied in three disease 

studies: spinal muscular atrophy (SMA), hereditary nonpolyposis colorectal cancer, and 

autism spectrum disorder (ASD). A large number of literature-curated data from splicing 

assays were used to validate our predictions for SMA and nonpolyposis colorectal cancer 

mutations, with additional mutagenesis experiments carried out for SMA. When applying 

our computational model to ASD, we performed whole genome sequencing on five ASD 

and four control subjects (deposited at the European Genome-phenome Archive, http://

www.ebi.ac.uk/ega/, with accession number EGAS00001000928). To make our splicing 

code publically available, we created a mutation analysis web tool (http://

tools.genes.toronto.edu/), programed in Python under the Flask web framework (http://

flask.pocoo.org/) while also making use of MongoDB (http://www.mongodb.org/), and 

Celery distributed task queue (http://celery.readthedocs.org/).
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Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. The human splicing code
(a) For a given cell type, the computational model extracts the regulatory code from a test 

DNA sequence and predicts the percent of transcripts with the exon spliced in, Ψ. (b) 

Predictions were made for 10,689 test exons profiled in 16 tissues, exons and tissues were 

binned according to their RNA-seq assessed values of Ψ, and for each bin (column) the 

distribution of code-predicted Ψ is plotted (n=56,104).
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Figure 2. Accounting for RNA-binding proteins
(a) The splicing code accounts for the affinities of RNA-binding proteins assayed in 98 in 

vitro experiments (13). (b) When code-predicted Ψ values are subtracted from RNA-seq 

assessed values of Ψ, their correlations with the binding affinities mostly vanish.

Xiong et al. Page 14

Science. Author manuscript; available in PMC 2016 January 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. Genome-wide analysis of genetic variations
(a) To assess the effect of a single nucleotide variation (SNV), the computational model is 

applied to the reference sequence and the variant. Then, the maximum difference ΔΨ across 

tissues is computed, along with a ‘regulatory score’ that also accounts for prediction 

confidence (Sec. S7). (b) The effect on Ψ of 658,420 intronic and exonic SNVs. (c) 

Locations and predicted ΔΨ of 81,608 disease annotated intronic SNVs and synonymous or 

missense exonic SNVs. In different sequence regions, the scores of disease SNVs tend to be 

larger than those of SNPs (Ansari-Bradley tests for equal dispersion, n includes both types).
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Figure 4. Regulatory scores of GWAS SNPs
(a) Distributions of regulatory scores for GWAS-implicated SNPs (n=457), non-GWAS-

implicated SNPs (n=262,347) and disease SNVs (n=18,291) in introns. (b) Regulatory 

scores of disease annotated intronic SNVs that are causal (n=17,631), supported by in vitro/

vivo data (n=224), only associated (n=324), or associated but have additional functional 

evidence (n=112). t-test P-values.
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Figure 5. The mutational landscape of spinal muscular atrophy
(a) Spinal muscular atrophy arises when there is homozygous loss of SMN1 function, but 

functional protein can be produced by modifying the regulation of SMN2, which differs 

from SMN1 in four nucleotides (red lightning bolts) and exhibits decreased inclusion of exon 

7. (b) Three mutations that the splicing code predicts will increase exon 7 inclusion in SMN2 

(green lighting bolts) were selected from predictions for all possible single-nucleotide 

substitutions 150nt into the intron. These were validated using RT-PCR (c), along with the 

predicted differences in SMN1 and SMN2 regulation due to three individual substitutions 

and all four substitutions. Predictions and RT-PCR data have a Spearman correlation of 0.82 

(P=0.017, one-sided permutation test). (d) Predicted ΔΨ for 85 individual mutations located 

in four regions are plotted against RT-PCR-assessed values; the Spearman correlation is 

0.74 (P=5.7e-16, one-sided permutation test).
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Figure 6. The mutational landscape of nonpolyposis colorectal cancer
(a) Predicted ΔΨ for mutations in MLH1 and MSH2 arising in patients with nonpolyposis 

colorectal cancer, or Lynch syndrome. Coding sequence (CDS) numbering is based on 

GenBank NM_000249.3 and NM_000251.2 and starts at A of the ATG translation initiation 

codon. (b) Validation using 134 MLH1 variations tested by RT-PCR (AUC=92.4%, 

P=2.8e-24, one-sided permutation test) and 73 MSH2 variations (AUC=93.8%, P=8.7e-15, 

one-sided permutation test).
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Figure 7. Splicing misregulation in individuals with autism
(a) Genes containing at least one SNV that the computational model predicts will cause 

decreased exon inclusion were identified in five autism spectrum disorder (ASD) cases and 

twelve controls, by thresholding ΔΨ using either the 2nd or 3rd percentile of ΔΨ for SNPs. 

(b) Genes that our method predicts are misregulated in ASD cases more frequently have 

high expression in brain tissues than in control cases. (c) The effect of varying the threshold 

on ΔΨ, and thus the number of case and control genes, on the odds ratio for the enrichment 

of central nervous system development genes (GO:0007417); in all cases, P<0.05.
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Figure 8. Misregulated genes and functional categories enriched in individuals with autism
Gene Ontology and pathway categories that are enriched (P≤0.01, Fisher's exact test) in 

misregulated genes from ASD cases compared to controls were identified (n=18), along with 

the corresponding set of genes from ASD cases. Each gene set is shown as a red or pink dot, 

depending on whether the 2nd or 3rd percentile threshold was used for detection (Fig. 7a), 

and size is proportional to the number of genes in the set. Edge thickness indicates the 

fraction of genes shared between two sets. Groups of functionally related gene sets are 

highlighted by blond discs. The names of novel genes that are not already implicated in 

ASD and have neural-related phenotypes are printed in black, the names of genes already 

implicated in ASD are printed in red, and otherwise gene names are printed in pale blue. If a 

gene is in multiple categories, the number of categories is written in superscript and genes in 

which a stop codon is introduced by the SNV are labeled ‘s’.
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