12,826 research outputs found
Low-lying even parity meson resonances and spin-flavor symmetry
A study is presented of the wave meson-meson interactions involving
members of the nonet and of the octet. The starting point is an
SU(6) spin-flavor extension of the SU(3) flavor Weinberg-Tomozawa Lagrangian.
SU(6) symmetry breaking terms are then included to account for the physical
meson masses and decay constants, while preserving partial conservation of the
axial current in the light pseudoscalar sector. Next, the matrix amplitudes
are obtained by solving the Bethe Salpeter equation in coupled-channel with the
kernel built from the above interactions. The poles found on the first and
second Riemann sheets of the amplitudes are identified with their possible
Particle Data Group (PDG) counterparts. It is shown that most of the low-lying
even parity PDG meson resonances, specially in the and sectors,
can be classified according to multiplets of the spin-flavor symmetry group
SU(6). The , and some resonances cannot be
accommodated within this SU(6) scheme and thus they would be clear candidates
to be glueballs or hybrids. Finally, we predict the existence of five exotic
resonances ( and/or ) with masses in the range 1.4--1.6 GeV,
which would complete the , , and multiplets of
SU(3)SU(2).Comment: 43 pages, 2 figures, 61 tables. Improved discussion of Section II. To
appear in Physical Review
Joint Dynamic Radio Resource Allocation and Mobility Load Balancing in 3GPP LTE Multi-Cell Network
Load imbalance, together with inefficient utilization of system resource, constitute major factors responsible for poor overall performance in Long Term Evolution (LTE) network. In this paper, a novel scheme of joint dynamic resource allocation and load balancing is proposed to achieve a balanced performance improvement in 3rd Generation Partnership Project (3GPP) LTE Self-Organizing Networks (SON). The new method which aims at maximizing network resource efficiency subject to inter-cell interference and intra-cell resource constraints is implemented in two steps. In the first step, an efficient resource allocation, including user scheduling and power assignment, is conducted in a distributed manner to serve as many users in the whole network as possible. In the second step, based on the resource allocation scheme, the optimization objective namely network resource efficiency can be calculated and load balancing is implemented by switching the user that can maximize the objective function. Lagrange Multipliers method and heuristic algorithm are used to resolve the formulated optimization problem. Simulation results show that our algorithm achieves better performance in terms of user throughput, fairness, load balancing index and unsatisfied user number compared with the traditional approach which takes resource allocation and load balancing into account, respectively
Proton rich nuclei at and beyond the proton drip line in the Relativistic Mean Field theory
Ground state properties of proton-rich odd- nuclei in the region are studied in the relativistic mean field (RMF) theory. The RMF
equations are solved by using the expansion method in the Harmonic-Oscillator
basis. In the particle-particle channel, we use the state-dependent BCS method
with a zero-range -force, which has been proved to be effective even
for neutron-rich nuclei. All the ground state properties, including the
one-proton separation energies, the ground state deformations, the last
occupied proton orbits and the locations of proton drip line, are calculated.
Good agreement with both the available experimental data and the predictions of
the RHB method are obtained.Comment: the version to appear in Progress of Theoretical Physics, more
discussions adde
Masses, Deformations and Charge Radii--Nuclear Ground-State Properties in the Relativistic Mean Field Model
We perform a systematic study of the ground-state properties of all the
nuclei from the proton drip line to the neutron drip line throughout the
periodic table employing the relativistic mean field model. The TMA parameter
set is used for the mean-field Lagrangian density, and a state-dependent BCS
method is adopted to describe the pairing correlation. The ground-state
properties of a total of 6969 nuclei with and from the
proton drip line to the neutron drip line, including the binding energies, the
separation energies, the deformations, and the rms charge radii, are calculated
and compared with existing experimental data and those of the FRDM and HFB-2
mass formulae. This study provides the first complete picture of the current
status of the descriptions of nuclear ground-state properties in the
relativistic mean field model. The deviations from existing experimental data
indicate either that new degrees of freedom are needed, such as triaxial
deformations, or that serious effort is needed to improve the current
formulation of the relativistic mean field model.Comment: 16 pages, 5 figures, to appear in Progress of Theoretical Physic
A systematic study of neutron magic nuclei with N = 8, 20, 28, 50, 82, and 126 in the relativistic mean field theory
We perform a systematic study of all the traditional neutron magic nuclei
with = 8, 20, 28, 50, 82, and 126, from the neutron drip line to the proton
drip line. We adopt the deformed relativistic mean field (RMF) theory as our
framework and treat pairing correlations by a simple BCS method with a
zero-range -force. Remarkable agreement with the available experimental
data is obtained for the binding energies, the two- and one-proton separation
energies, and the nuclear charge radii. The calculated nuclear deformations are
compared with the available experimental data and the predictions of the FRDM
mass formula and the HFBCS-1 mass formula. We discuss, in particular, the
appearance of sub-shell magic nuclei by observing irregular behavior in the
two- and one-proton separation energies.Comment: the version to appear in Journal of Physics G; more references adde
Scattering lengths of Nambu-Goldstone bosons off mesons and dynamically generated heavy-light mesons
Recent lattice QCD simulations of the scattering lengths of Nambu-Goldstone
bosons off the mesons are studied using unitary chiral perturbation theory.
We show that the Lattice QCD data are better described in the covariant
formulation than in the heavy-meson formulation. The can be
dynamically generated from the coupled-channels interaction without
\textit{a priori} assumption of its existence. A new renormalization scheme is
proposed which manifestly satisfies chiral power counting rules and has
well-defined behavior in the infinite heavy-quark mass limit. Using this scheme
we predict the heavy-quark spin and flavor symmetry counterparts of the
.Comment: 22 pages, 5 figures; to appear in Physical Review
Alpha-decay chains of and in the Relativistic Mean Field theory
In the recent experiments designed to synthesize the element 115 in the
Am+Ca reaction at Dubna in Russia, three similar decay chains
consisting of five consecutive -decays, and another different decay
chain of four consecutive -decays are detected, and the decay
properties of these synthesized nuclei are claimed to be consistent with
consecutive -decays originating from the parent isotopes of the new
element 115, and , respectively\cite{ogan.03}. Here in
the present work, the recently developed deformed RMF+BCS method with a
density-independent delta-function interaction in the pairing channel is
applied to the analysis of these newly synthesized superheavy nuclei
, , and their -decay daughter nuclei. The
calculated -decay energies and half-lives agree well with the
experimental values and with those of the macroscopic-microscopic FRDM+FY and
YPE+WS models. In the mean field Lagrangian, the TMA parameter set is used.
Particular emphasis is paid on the influence to both the ground-state
properties and energy surfaces introduced by different treatments of pairing.
Two different effective interactions in the particle-particle channel, i.e.,
the constant pairing and the density-independent delta-function interaction,
together with the blocking effect are discussed in detail.Comment: 17 pages, 5 figure
Direct yaw-moment control of an in-wheel-motored electric vehicle based on body slip angle fuzzy observer
A stabilizing observer-based control algorithm for an in-wheel-motored vehicle is proposed, which generates direct yaw moment to compensate for the state deviations. The control scheme is based on a fuzzy rule-based body slip angle (beta) observer. In the design strategy of the fuzzy observer, the vehicle dynamics is represented by Takagi-Sugeno-like fuzzy models. Initially, local equivalent vehicle models are built using the linear approximations of vehicle dynamics for low and high lateral acceleration operating regimes, respectively. The optimal beta observer is then designed for each local model using Kalman filter theory. Finally, local observers are combined to form the overall control system by using fuzzy rules. These fuzzy rules represent the qualitative relationships among the variables associated with the nonlinear and uncertain nature of vehicle dynamics, such as tire force saturation and the influence of road adherence. An adaptation mechanism for the fuzzy membership functions has been incorporated to improve the accuracy and performance of the system. The effectiveness of this design approach has been demonstrated in simulations and in a real-time experimental settin
Vector meson-vector meson interaction in a hidden gauge unitary approach
The formalism developed recently to study vector meson--vector meson
interaction, and applied to the case of , is extended to study the
interaction of the nonet of vector mesons among themselves. The interaction
leads to poles of the scattering matrix corresponding to bound states or
resonances. We show that 11 states (either bound or resonant) get dynamically
generated in nine strangeness-isospin-spin channels. Five of them can be
identified with those reported in the PDG, i.e., the , ,
, , and . The masses of the latter three
tensor states have been used to fine-tune the free parameters of the unitary
approach, i.e., the subtraction constants in evaluating the vector meson
-vector meson loop functions in the dimensional regularization scheme. The
branching ratios of these five dynamically generated states are found to be
consistent with data. The existence of the other six states should be taken as
predictions to be tested by future experiments.Comment: typos corrected; more discussions; one of the appendix rearrange
- …