148 research outputs found

    Reading intervention : using self-assessment to increase fluency and comprehension for struggling readers

    Get PDF
    The purpose of this study was to assess the effectiveness of a fluency intervention on students\u27 reading fluency and comprehension. The students in the study were six third graders that were reading below grade level expectations. During the intervention, the students received instruction in reading rate and prosody. The intervention consisted of mini-lessons and opportunities for students to practice through the use of wide reading. The students created a self-assessment rubric that they used during the practice sessions. According to pre- and post-intervention reading inventories, all students increased in oral reading fluency. A correlation to increased reading comprehension was also found. Student motivation and self-confidence were also measured, and increases were noted by the students and classroom teachers. The results indicate that an intervention focused on fluency through wide reading and self-assessments may increase students\u27 reading fluency and also influence reading comprehension

    The role of ozone atmosphere-snow gas exchange on polar, boundary-layer tropospheric ozone ? a review and sensitivity analysis

    Get PDF
    International audienceRecent research on snowpack processes and atmosphere-snow gas exchange has demonstrated that chemical and physical interactions between the snowpack and the overlaying atmosphere have a substantial impact on the composition of the lower troposphere. These observations also imply that ozone deposition to the snowpack possibly depends on parameters including the quantity and composition of deposited trace gases, solar irradiance, snow temperature and the substrate below the snowpack. Current literature spans a remarkably wide range of ozone deposition velocities (vdO3); several studies even reported positive ozone fluxes out of the snow. Overall, published values range from ~?

    Technical Note: The MESSy-submodel AIRSEA calculating the air-sea exchange of chemical species

    Get PDF
    The new submodel AIRSEA for the Modular Earth Submodel System (MESSy) is presented. It calculates the exchange of chemical species between the ocean and the atmosphere with a focus on organic compounds. The submodel can be easily extended to a large number of tracers, including highly soluble ones. It is demonstrated that the application of explicitly calculated air-sea exchanges with AIRSEA can induce substantial changes in the simulated tracer distributions in the troposphere in comparison to a model setup in which this process is neglected. For example, the simulations of acetone, constrained with measured oceanic concentrations, shows relative changes in the atmospheric surface layer mixing ratios over the Atlantic Ocean of up to 300%

    Technical Note: An implementation of the dry removal processes DRY DEPosition and SEDImentation in the Modular Earth Submodel System (MESSy)

    Get PDF
    International audienceWe present the submodels DRYDEP and SEDI for the Modular Earth Submodel System (MESSy). Dry deposition of gases and aerosols is calculated within DRYDEP, whereas SEDI deals with aerosol particle sedimentation. Dry deposition velocities depend on the near-surface turbulence and the physical and chemical properties of the surface cover (e.g. the roughness length, soil pH or leaf stomatal exchange). The dry deposition algorithm used in DRYDEP is based on the big leaf approach and is described in detail within this Technical Note. The sedimentation submodel SEDI contains two sedimentation schemes: a simple upwind zeroth order scheme and a first order approach

    Simulating organic species with the global atmospheric chemistry general circulation model ECHAM5/MESSy1: a comparison of model results with observations

    Get PDF
    The atmospheric-chemistry general circulation model ECHAM5/MESSy1 is evaluated with observations of different organic ozone precursors. This study continues a prior analysis which focused primarily on the representation of atmospheric dynamics and ozone. We use the results of the same reference simulation and apply a statistical analysis using data from numerous field campaigns. The results serve as a basis for future improvements of the model system. ECHAM5/MESSy1 generally reproduces the spatial distribution and the seasonal cycle of carbon monoxide (CO) very well. However, for the background in the Northern Hemisphere we obtain a negative bias (mainly due to an underestimation of emissions from fossil fuel combustion), and in the high latitude Southern Hemisphere a yet unexplained positive bias. The model results agree well with observations of alkanes, whereas severe problems in the simulation of alkenes and isoprene are present. For oxygenated compounds the results are ambiguous: The model results are in good agreement with observations of formaldehyde, but systematic biases are present for methanol and acetone. The discrepancies between the model results and the observations are explained (partly) by means of sensitivity studies

    The aerosol-climate model ECHAM5-HAM

    Get PDF
    The aerosol-climate modelling system ECHAM5-HAM is introduced. It is based on a flexible microphysical approach and, as the number of externally imposed parameters is minimised, allows the application in a wide range of climate regimes. ECHAM5-HAM predicts the evolution of an ensemble of microphysically interacting internally- and externally-mixed aerosol populations as well as their size-distribution and composition. The size-distribution is represented by a superposition of log-normal modes. In the current setup, the major global aerosol compounds sulfate (SU), black carbon (BC), particulate organic matter (POM), sea salt (SS), and mineral dust (DU) are included. The simulated global annual mean aerosol burdens (lifetimes) for the year 2000 are for SU: 0.80 Tg(S) (3.9 days), for BC: 0.11 Tg (5.4 days), for POM: 0.99 Tg (5.4 days), for SS: 10.5 Tg (0.8 days), and for DU: 8.28 Tg (4.6 days). An extensive evaluation with in-situ and remote sensing measurements underscores that the model results are generally in good agreement with observations of the global aerosol system. The simulated global annual mean aerosol optical depth (AOD) is with 0.14 in excellent agreement with an estimate derived from AERONET measurements (0.14) and a composite derived from MODIS-MISR satellite retrievals (0.16). Regionally, the deviations are not negligible. However, the main patterns of AOD attributable to anthropogenic activity are reproduced

    Emission of monoterpenes from European beech (<i>Fagus</i><i> sylvatica</i> L.) as a function of light and temperature

    No full text
    International audienceUsing a dynamic branch enclosure technique European beech (Fagus sylvatica L.) was characterised as a strong emitter of monoterpenes, with sabinene being the predominant compound released. Since monoterpene emission was demonstrated to be a function of light and temperature, application of light and temperature dependent algorithms resulted in reasonable agreement with the measured data. Furthermore, during high temperature periods the depression of net CO2 exchange during midday (midday depression) was accompanied by a depression of monoterpene emission on one occasion. The species dependent standard emission factor and the light and temperature regulated release of monoterpenes is of crucial importance for European VOC emissions. All measurements were performed within the framework of the ECHO project (Emission and CHemical transformation of biogenic volatile Organic compounds) during two intensive field campaigns in the summers of 2002 and 2003

    On the segregation of chemical species in a clear boundary layer over heterogeneous land surfaces

    Get PDF
    Using a Large-Eddy Simulation model, we have systematically studied the inability of boundary layer turbulence to efficiently mix reactive species. This creates regions where the species are accumulated in a correlated or anti-correlated way, thereby modifying the mean reactivity. We quantify this modification by the intensity of segregation, &lt;i&gt;I&lt;/i&gt;&lt;sub&gt;S&lt;/sub&gt;, and analyse the driving mechanisms: heterogeneity of the surface moisture and heat fluxes, various background wind patterns and non-uniform isoprene emissions. The heterogeneous surface conditions are characterized by cool and wet forested patches with high isoprene emissions, alternated with warm and dry patches that represents pasture with relatively low isoprene emissions. For typical conditions in the Amazon rain forest, applying homogeneous surface forcings and in the absence of free tropospheric NO&lt;sub&gt;x&lt;/sub&gt;, the isoprene-OH reaction rate is altered by less than 10%. This is substantially smaller than the previously assumed &lt;i&gt;I&lt;/i&gt;&lt;sub&gt;S&lt;/sub&gt; of 50% in recent large-scale model analyses of tropical rain forest chemistry. Spatial heterogeneous surface emissions enhance the segregation of species, leading to alterations of the chemical reaction rates up to 20%. The intensities of segregation are enhanced when the background wind direction is parallel to the borders between the patches and reduced in the case of a perpendicular wind direction. The effects of segregation on trace gas concentrations vary per species. For the highly reactive OH, the differences in concentration averaged over the boundary layer are less than 2% compared to homogeneous surface conditions, while the isoprene concentration is increased by as much as 12% due to the reduced chemical reaction rates. These processes take place at the sub-grid scale of chemistry transport models and therefore need to be parameterized
    corecore