106 research outputs found

    Impact of deforestation on solid and dissolved organic matter characteristics of tropical peat forests: implications for carbon release

    Get PDF
    This study compares the organic chemistry of peat beneath one of last remaining pristine tropical peat forests in Southeast Asia with a neighbouring peat dome that has been deforested, but not intentionally drained, in the Belait district of Brunei Darussalam, Borneo. We characterized the solid and dissolved organic matter collected from the two domes, through a combination of methods including elemental analysis, phenolic content and Fourier transform infrared spectroscopy (FTIR) investigation of solid peat, as well as optical characterisation (absorbance, fluorescence) of dissolved organic matter (DOM). The peat had a high content of lignin, consistent with its origin from the Shorea albida trees on the domes. Dissolved organic carbon (DOC) concentration in the pore water was significantly greater in the deforested site (79.9 ± 5.5 mg l[superscript −1]) than the pristine site (62.2 ± 2.2 mg l[superscript −1]). The dissolved organic matter was richer in nitrogen and phenolics in the deforested site. The optical properties (Fluorescence Index) indicated a modification of DOM cycling in the deforested site (enhanced decomposition of the peat and fresh litter). Comparison of the solid peat composition between the two sites also suggests effects of deforestation: sulphur, nitrogen and phenolic contents were higher in the deforested site. Taken together, these observations are consistent with peat enhanced decomposition in the deforested site, even without engineered drainage.Singapore-MIT Alliance for Research and Technology. Center for Environmental Sensing and Modelin

    Introducing global peat-specific temperature and pH calibrations based on brGDGT bacterial lipids

    Get PDF
    This is the author accepted manuscript. The final version is available from Elsevier via the DOI in this record.Glycerol dialkyl glycerol tetraethers (GDGTs) are membrane-spanning lipids from Bacteria and Archaea that are ubiquitous in a range of natural archives and especially abundant in peat. Previous work demonstrated that the distribution of bacterial branched GDGTs (brGDGTs) in mineral soils is correlated to environmental factors such as mean annual air temperature (MAAT) and soil pH. However, the influence of these parameters on brGDGT distributions in peat is largely unknown. Here we investigate the distribution of brGDGTs in 470 samples from 96 peatlands around the world with a broad mean annual air temperature (−8 to 27 °C) and pH (3–8) range and present the first peat-specific brGDGT-based temperature and pH calibrations. Our results demonstrate that the degree of cyclisation of brGDGTs in peat is positively correlated with pH, pH = 2.49 x CBTpeat + 8.07 (n = 51, R2 65 = 0.58, RMSE = 0.8) and the degree of methylation of brGDGTs is positively correlated with MAAT, MAATpeat (°C) = 52.18 x MBT5me’ – 23.05 (n = 96, R2 67 = 0.76, RMSE = 4.7 °C). 3 These peat-specific calibrations are distinct from the available mineral soil calibrations. In light of the error in the temperature calibration (~ 4.7 °C), we urge caution in any application to reconstruct late Holocene climate variability, where the climatic signals are relatively small, and the duration of excursions could be brief. Instead, these proxies are well-suited to reconstruct large amplitude, longer-term shifts in climate such as deglacial transitions. Indeed, when applied to a peat deposit spanning the late glacial period (~15.2 kyr), we demonstrate that MAATpeat yields absolute temperatures and relative temperature changes that are consistent with those from other proxies. In addition, the application of MAATpeat to fossil peat (i.e. lignites) has the potential to reconstruct terrestrial climate during the Cenozoic. We conclude that there is clear potential to use brGDGTs in peats and lignites to reconstruct past terrestrial climateThis research was funded through the advanced ERC grant “the greenhouse earth system” (T-GRES, project reference 340923), awarded to RDP. All authors are part of the “T-GRES Peat Database collaborators” collective. RDP also acknowledges the Royal Society Wolfson Research Merit Award. We thank D. Atkinson for help with the sample preparation. We acknowledge support from Labex VOLTAIRE (ANR-10- 22 LABX-100-01). Peat from Patagonia and Tierra del Fuego were collected thanks to a Young Researcher Grant of the Agence National de la Recherche (ANR) to FDV, project ANR-2011-JS56-006-01 “PARAD” and with the help of Ramiro Lopez, Andrea Coronato and Veronica Pancotto (CADIC-CONICET, Ushuaia). Peat from Brazil was collected with the context of CNPq project 482815/2011-6. Samples from France (Frasne and La Guette) were collected thanks to the French Observatory of Peatlands. The Canadian peat was collected in the context of the NSERC-Discovery grant of L. Rochefort. Peats from China were obtained under a National Natural Science Foundation of China grant (No. 41372033), awarded to Y. Zheng

    Introducing global peat-specific temperature and pH calibrations based on brGDGT bacterial lipids

    Get PDF
    Glycerol dialkyl glycerol tetraethers (GDGTs) are membrane-spanning lipids from Bacteria and Archaea that are ubiquitous in a range of natural archives and especially abundant in peat. Previous work demonstrated that the distribution of bacterial branched GDGTs (brGDGTs) in mineral soils is correlated to environmental factors such as mean annual air temperature (MAAT) and soil pH. However, the influence of these parameters on brGDGT distributions in peat is largely unknown. Here we investigate the distribution of brGDGTs in 470 samples from 96 peatlands around the world with a broad mean annual air temperature (-8 to 27 degrees C) and pH (3-8) range and present the first peat-specific brGDGT-based temperature and pH calibrations. Our results demonstrate that the degree of cyclisation of brGDGTs in peat is positively correlated with pH, pH = 2.49 x CBTpeat + 8.07 (n = 51, R-2 = 0.58, RMSE = 0.8) and the degree of methylation of brGDGTs is positively correlated with MAAT, MAAT(peat) (degrees C) = 52.18 x MBT'(5me) - 23.05 (n = 96, R-2 = 0.76, RMSE = 4.7 degrees C). These peat-specific calibrations are distinct from the available mineral soil calibrations. In light of the error in the temperature calibration (similar to 4.7 degrees C), we urge caution in any application to reconstruct late Holocene climate variability, where the climatic signals are relatively small, and the duration of excursions could be brief. Instead, these proxies are well-suited to reconstruct large amplitude, longer-term shifts in climate such as deglacial transitions. Indeed, when applied to a peat deposit spanning the late glacial period (similar to 15.2 kyr), we demonstrate that MAAT(peat) yields absolute temperatures and relative temperature changes that are consistent with those from other proxies. In addition, the application of MAAT(peat) to fossil peat (i.e. lignites) has the potential to reconstruct terrestrial climate during the Cenozoic. We conclude that there is clear potential to use brGDGTs in peats and lignites to reconstruct past terrestrial climate. (C) 2017 The Authors. Published by Elsevier Ltd

    C mobilisation in disturbed tropical peat swamps: old DOC can fuel the fluvial efflux of old carbon dioxide, but site recovery can occur

    Get PDF
    Southeast-Asian peat swamp forests have been significantly logged and converted to plantation. Recently, to mitigate land degradation and C losses, some areas have been left to regenerate. Understanding how such complex land use change affects greenhouse gas emissions is essential for modelling climate feedbacks and supporting land management decisions. We carried out field research in a Malaysian swamp forest and an oil palm plantation to understand how clear-felling, drainage, and illegal and authorized conversion to oil palm impacted the C cycle, and how the C cycle may change if such logging and conversion stopped. We found that both the swamp forest and the plantation emit centuries-old CO2 from their drainage systems in the managed areas, releasing sequestered C to the atmosphere. Oil palm plantations are an iconic symbol of tropical peatland degradation, but CO2 efflux from the recently-burnt, cleared swamp forest was as old as from the oil palm plantation. However, in the swamp forest site, where logging had ceased approximately 30 years ago, the age of the CO2 efflux was modern, indicating recovery of the system can occur. 14C dating of the C pool acted as a tracer of recovery as well as degradation and offers a new tool to assess efficacy of restoration management. Methane was present in many sites, and in higher concentrations in slow-flowing anoxic systems as degassing mechanisms are not strong. Methane loading in freshwaters is rarely considered, but this may be an important C pool in restored drainage channels and should be considered in C budgets and losses

    Influence d'une tourbiĂšre sur la composition des eaux de surface

    No full text
    National audienc
    • 

    corecore