155 research outputs found

    Superdiffusion in the Dissipative Standard Map

    Full text link
    We consider transport properties of the chaotic (strange) attractor along unfolded trajectories of the dissipative standard map. It is shown that the diffusion process is normal except of the cases when a control parameter is close to some special values that correspond to the ballistic mode dynamics. Diffusion near the related crisises is anomalous and non-uniform in time: there are large time intervals during which the transport is normal or ballistic, or even superballistic. The anomalous superdiffusion seems to be caused by stickiness of trajectories to a non-chaotic and nowhere dense invariant Cantor set that plays a similar role as cantori in Hamiltonian chaos. We provide a numerical example of such a sticky set. Distribution function on the sticky set almost coincides with the distribution function (SRB measure) of the chaotic attractor.Comment: 10 Figure

    Chaotic Observer-based Synchronization Under Information Constraints

    Full text link
    Limit possibilities of observer-based synchronization systems under information constraints (limited information capacity of the coupling channel) are evaluated. We give theoretical analysis for multi-dimensional drive-response systems represented in the Lurie form (linear part plus nonlinearity depending only on measurable outputs). It is shown that the upper bound of the limit synchronization error (LSE) is proportional to the upper bound of the transmission error. As a consequence, the upper and lower bounds of LSE are proportional to the maximum rate of the coupling signal and inversely proportional to the information transmission rate (channel capacity). Optimality of the binary coding for coders with one-step memory is established. The results are applied to synchronization of two chaotic Chua systems coupled via a channel with limited capacity.Comment: 7 pages, 6 figures, 27 reference

    Effect of periodic parametric excitation on an ensemble of force-coupled self-oscillators

    Full text link
    We report the synchronization behavior in a one-dimensional chain of identical limit cycle oscillators coupled to a mass-spring load via a force relation. We consider the effect of periodic parametric modulation on the final synchronization states of the system. Two types of external parametric excitations are investigated numerically: periodic modulation of the stiffness of the inertial oscillator and periodic excitation of the frequency of the self-oscillatory element. We show that the synchronization scenarios are ruled not only by the choice of parameters of the excitation force but depend on the initial collective state in the ensemble. We give detailed analysis of entrainment behavior for initially homogeneous and inhomogeneous states. Among other results, we describe a regime of partial synchronization. This regime is characterized by the frequency of collective oscillation being entrained to the stimulation frequency but different from the average individual oscillators frequency.Comment: Comments and suggestions are welcom

    Behavior of the Escape Rate Function in Hyperbolic Dynamical Systems

    Get PDF
    For a fixed initial reference measure, we study the dependence of the escape rate on the hole for a smooth or piecewise smooth hyperbolic map. First, we prove the existence and Holder continuity of the escape rate for systems with small holes admitting Young towers. Then we consider general holes for Anosov diffeomorphisms, without size or Markovian restrictions. We prove bounds on the upper and lower escape rates using the notion of pressure on the survivor set and show that a variational principle holds under generic conditions. However, we also show that the escape rate function forms a devil's staircase with jumps along sequences of regular holes and present examples to elucidate some of the difficulties involved in formulating a general theory.Comment: 21 pages. v2 differs from v1 only by additions to the acknowledgment

    The MHD nature of ionospheric wave packets excited by the solar terminator

    Full text link
    We obtained the first experimental evidence for the magnetohydrodynamic (MHD) nature of ionospheric medium-scale travelling wave packets (MSTWP). We used data on total electron content (TEC) measurements obtained at the dense Japanese network GPS/GEONET (1220 stations) in 2008-2009. We found that the diurnal, seasonal and spectral MSTWP characteristics are specified by the solar terminator (ST) dynamics. MSTWPs are the chains of narrow-band TEC oscillations with single packet's duration of about 1-2 hours and oscillation periods of 10-20 minutes. Their total duration is about 4--6 hours. The MSTWP spatial structure is characterized by a high degree of anisotropy and coherence at the distance of more than 10 wavelengths. The MSTWP direction of travelling is characterized by a high directivity regardless of seasons. Occurrence rate of daytime MSTWPs is high in winter and during equinoxes. Occurrence rate of nighttime MSTIDs has its peak in summer. These features are consistent with previous MS travelling ionosphere disturbance (TID) statistics obtained from 630-nm airglow imaging observations in Japan. In winter, MSTWPs in the northern hemisphere are observed 3-4 hours after the morning ST passage. In summer, MSTWPs are detected 1.5-2 hours before the evening ST occurrence at the point of observations, at the moment of the evening ST passage in the magneto-conjugate point. Both the high Q-factor of oscillatory system and synchronization of MSTWP occurrence with the solar terminator passage at the point of observations and in the magneto-conjugate area testify the MHD nature of ST-excited MSTWP generation. The obtained results are the first experimental evidence for the hypothesis of the ST-generated ion sound waves.Comment: 12 pages, 3 figure

    Synchronous Behavior of Two Coupled Electronic Neurons

    Full text link
    We report on experimental studies of synchronization phenomena in a pair of analog electronic neurons (ENs). The ENs were designed to reproduce the observed membrane voltage oscillations of isolated biological neurons from the stomatogastric ganglion of the California spiny lobster Panulirus interruptus. The ENs are simple analog circuits which integrate four dimensional differential equations representing fast and slow subcellular mechanisms that produce the characteristic regular/chaotic spiking-bursting behavior of these cells. In this paper we study their dynamical behavior as we couple them in the same configurations as we have done for their counterpart biological neurons. The interconnections we use for these neural oscillators are both direct electrical connections and excitatory and inhibitory chemical connections: each realized by analog circuitry and suggested by biological examples. We provide here quantitative evidence that the ENs and the biological neurons behave similarly when coupled in the same manner. They each display well defined bifurcations in their mutual synchronization and regularization. We report briefly on an experiment on coupled biological neurons and four dimensional ENs which provides further ground for testing the validity of our numerical and electronic models of individual neural behavior. Our experiments as a whole present interesting new examples of regularization and synchronization in coupled nonlinear oscillators.Comment: 26 pages, 10 figure

    Asymptotically stable phase synchronization revealed by autoregressive circle maps

    Full text link
    A new type of nonlinear time series analysis is introduced, based on phases, which are defined as polar angles in spaces spanned by a finite number of delayed coordinates. A canonical choice of the polar axis and a related implicit estimation scheme for the potentially underlying auto-regressive circle map (next phase map) guarantee the invertibility of reconstructed phase space trajectories to the original coordinates. The resulting Fourier approximated, Invertibility enforcing Phase Space map (FIPS map) is well suited to detect conditional asymptotic stability of coupled phases. This rather general synchronization criterion unites two existing generalisations of the old concept and can successfully be applied e.g. to phases obtained from ECG and airflow recordings characterizing cardio-respiratory interaction.Comment: PDF file, 232 KB, 24 pages, 3 figures; cheduled for Phys. Rev. E (Nov) 200

    Delayed Self-Synchronization in Homoclinic Chaos

    Full text link
    The chaotic spike train of a homoclinic dynamical system is self-synchronized by re-inserting a small fraction of the delayed output. Due to the sensitive nature of the homoclinic chaos to external perturbations, stabilization of very long periodic orbits is possible. On these orbits, the dynamics appears chaotic over a finite time, but then it repeats with a recurrence time that is slightly longer than the delay time. The effect, called delayed self-synchronization (DSS), displays analogies with neurodynamic events which occur in the build-up of long term memories.Comment: Submitted to Phys. Rev. Lett., 13 pages, 7 figure
    corecore