23 research outputs found

    Fast and slow rotators in the densest environments: a FLAMES/GIRAFFE IFS study of galaxies in Abell 1689 at z=0.183

    Get PDF
    We present FLAMES/GIRAFFE integral field spectroscopy of 30 galaxies in the massive cluster Abell 1689 at z = 0.183. Conducting an analysis similar to that of ATLAS3D, we extend the baseline of the kinematic morphology-density relation by an order of magnitude in projected density and show that it is possible to use existing instruments to identify slow and fast rotators beyond the local Universe. We find 4.5 +- 1.0 slow rotators with a distribution in magnitude similar to those in the Virgo cluster. The overall slow rotator fraction of our Abell 1689 sample is 0.15 +- 0.03, the same as in Virgo using our selection criteria. This suggests that the fraction of slow rotators in a cluster is not strongly dependent on its density. However, within Abell 1689, we find that the fraction of slow rotators increases towards the centre, as was also found in the Virgo cluster.Comment: Accepted by MNRA

    Different higher order kinematics between star-forming and quiescent galaxies based on the SAMI, MAGPI, and LEGA-C surveys

    Get PDF
    We present the first statistical study of spatially integrated non-Gaussian stellar kinematics spanning 7 Gyr in cosmic time. We use deep, rest-frame optical spectroscopy of massive galaxies (stellar mass ⁠) at redshifts z = 0.05, 0.3, and 0.8 from the SAMI, MAGPI, and LEGA-C surveys, to measure the excess kurtosis h4 of the stellar velocity distribution, the latter parametrized as a Gauss–Hermite series. We find that at all redshifts where we have large enough samples, h4 anticorrelates with the ratio between rotation and dispersion, highlighting the physical connection between these two kinematic observables. In addition, and independently from the anticorrelation with rotation-to-dispersion ratio, we also find a correlation between h4 and M⋆, potentially connected to the assembly history of galaxies. In contrast, after controlling for mass, we find no evidence of independent correlation between h4 and aperture velocity dispersion or galaxy size. These results hold for both star-forming and quiescent galaxies. For quiescent galaxies, h4 also correlates with projected shape, even after controlling for the rotation-to-dispersion ratio. At any given redshift, star-forming galaxies have lower h4 compared to quiescent galaxies, highlighting the link between kinematic structure and star-forming activity

    Evolution in the orbital structure of quiescent galaxies from MAGPI, LEGA-C, and SAMI surveys: direct evidence for merger-driven growth over the last 7 Gyr

    Get PDF
    We present the first study of spatially integrated higher-order stellar kinematics over cosmic time. We use deep rest-frame optical spectroscopy of quiescent galaxies at redshifts z = 0.05, 0.3, and 0.8 from the SAMI, MAGPI, and LEGA-C surveys to measure the excess kurtosis h4 of the stellar velocity distribution, the latter parametrized as a Gauss-Hermite series. Conservatively using a redshift-independent cut in stellar mass (⁠⁠) and matching the stellar-mass distributions of our samples, we find 7σ evidence of h4 increasing with cosmic time, from a median value of 0.019 ± 0.002 at z = 0.8 to 0.059 ± 0.004 at z = 0.06. Alternatively, we use a physically motivated sample selection based on the mass distribution of the progenitors of local quiescent galaxies as inferred from numerical simulations; in this case, we find 10σ evidence. This evolution suggests that, over the last 7 Gyr, there has been a gradual decrease in the rotation-to-dispersion ratio and an increase in the radial anisotropy of the stellar velocity distribution, qualitatively consistent with accretion of gas-poor satellites. These findings demonstrate that massive galaxies continue to accrete mass and increase their dispersion support after becoming quiescent

    Predicting needlestick and sharps injuries in nursing students: Development of the SNNIP scale

    Get PDF
    Aim: To develop an instrument to investigate knowledge and predictive factors of needlestick and sharps injuries (NSIs) in nursing students during clinical placements. Design: Instrument development and cross-sectional study for psychometric testing. Methods: A self-administered instrument including demographic data, injury epidemiology and predictive factors of NSIs was developed between October 2018–January 2019. Content validity was assessed by a panel of experts. The instrument's factor structure and discriminant validity were explored using principal components analysis. The STROBE guidelines were followed. Results: Evidence of content validity was found (S-CVI 0.75; I-CVI 0.50–1.00). A three-factor structure was shown by exploratory factor analysis. Of the 238 participants, 39% had been injured at least once, of which 67.3% in the second year. Higher perceptions of “personal exposure” (4.06, SD 3.78) were reported by third-year students. Higher scores for “perceived benefits” of preventive behaviours (13.6, SD 1.46) were reported by second-year students

    Earliest Galaxies in the JADES Origins Field: Luminosity Function and Cosmic Star Formation Rate Density 300 Myr after the Big Bang

    Get PDF
    We characterize the earliest galaxy population in the JADES Origins Field, the deepest imaging field observed with JWST. We make use of ancillary Hubble Space Telescope optical images (five filters spanning 0.4-0.9 ÎŒm) and novel JWST images with 14 filters spanning 0.8−5 ÎŒm, including seven medium-band filters, and reaching total exposure times of up to 46 hr per filter. We combine all our data at >2.3 ÎŒm to construct an ultradeep image, reaching as deep as ≈31.4 AB mag in the stack and 30.3-31.0 AB mag (5σ, r = 0.″1 circular aperture) in individual filters. We measure photometric redshifts and use robust selection criteria to identify a sample of eight galaxy candidates at redshifts z = 11.5−15. These objects show compact half-light radii of R 1/2 ∌ 50−200 pc, stellar masses of M ⋆ ∌ 107−108 M ☉, and star formation rates ∌ 0.1−1 M ☉ yr−1. Our search finds no candidates at 15 < z < 20, placing upper limits at these redshifts. We develop a forward-modeling approach to infer the properties of the evolving luminosity function without binning in redshift or luminosity that marginalizes over the photometric redshift uncertainty of our candidate galaxies and incorporates the impact of nondetections. We find a z = 12 luminosity function in good agreement with prior results, and that the luminosity function normalization and UV luminosity density decline by a factor of ∌2.5 from z = 12 to z = 14. We discuss the possible implications of our results in the context of theoretical models for evolution of the dark matter halo mass function

    JADES Possible Population III signatures at z = 10.6 in the halo of GN-z11

    Get PDF
    Finding the first generation of stars formed out of pristine gas in the early Universe, known as Population III (PopIII) stars, is one of the most important goals of modern astrophysics. Recent models have suggested that PopIII stars may form in pockets of pristine gas in the halo of more evolved galaxies. We present NIRSpec integral field spectroscopy and micro-shutter array spectroscopic observations of the region around GNz11, an exceptionally luminous galaxy at z = 10.6, that reveal a greater than 5σ detection of a feature consistent with being HeIIλ1640 emission at the redshift of GN-z11. The very high equivalent width of the putative HeII emission in this clump (log (EWrest(HeII)/Å) = 1.79+−001525) and a lack of metal lines can be explained in terms of photoionisation by PopIII stars, while photoionisation by PopII stars is inconsistent with the data. The high equivalent width would also indicate that the putative PopIII stars likely have an initial mass function with an upper cutoff reaching at least 500 M . The PopIII bolometric luminosity inferred from the HeII line would be ∌7 × 109 L , which would imply a total stellar mass formed in the burst of ∌2 × 105 M . We find that photoionisation by the active galactic nucleus (AGN) in GN-z11 cannot account for the HeII luminosity observed in the clump but can potentially be responsible for an additional HeII emission observed closer to GN-z11. We also consider the possibility of in situ photoionisation by an accreting direct collapse black hole hosted by the HeII clump. We find that this scenario is less favoured, but it remains a possible alternative interpretation. We also report the detection of a Lyα halo stemming out of GN-z11 and extending out to ∌2 kpc as well as resolved funnel-shaped CIII emission likely tracing the ionisation cone of the AGN

    The Cosmos in Its Infancy: JADES Galaxy Candidates at z >8 in GOODS-S and GOODS-N

    Get PDF
    We present a catalog of 717 candidate galaxies at z > 8 selected from 125 square arcmin of NIRCam imaging as part of the JWST Advanced Deep Extragalactic Survey (JADES). We combine the full JADES imaging data set with data from the JWST Extragalactic Medium Survey and First Reionization Epoch Spectroscopic COmplete Survey (FRESCO) along with extremely deep existing observations from Hubble Space Telescope (HST)/Advanced Camera for Surveys (ACS) for a final filter set that includes 15 JWST/NIRCam filters and five HST/ACS filters. The high-redshift galaxy candidates were selected from their estimated photometric redshifts calculated using a template-fitting approach, followed by visual inspection from seven independent reviewers. We explore these candidates in detail, highlighting interesting resolved or extended sources, sources with very red long-wavelength slopes, and our highest-redshift candidates, which extend to zphot ∌ 18. Over 93% of the sources are newly identified from our deep JADES imaging, including 31 new galaxy candidates at zphot > 12. We also investigate potential contamination by stellar objects, and do not find strong evidence from spectral energy distribution fitting that these faint high-redshift galaxy candidates are low-mass stars. Using 42 sources in our sample with measured spectroscopic redshifts from NIRSpec and FRESCO, we find excellent agreement to our photometric redshift estimates, with no catastrophic outliers and an average difference of 〈Δz = zphot − zspec〉 = 0.26. These sources comprise one of the most robust samples for probing the early buildup of galaxies within the first few hundred million years of the Universe’s history

    Carbonaceous dust grains seen in the first billion years of cosmic time

    Get PDF
    Large dust reservoirs (up to approximately 108 M ⊙) have been detected1–3 in galaxies out to redshift z ≃ 8, when the age of the Universe was only about 600 Myr. Generating substantial amounts of dust within such a short timescale has proven challenging for theories of dust formation4,5 and has prompted the revision of the modelling of potential sites of dust production6–8, such as the atmospheres of asymptotic giant branch stars in low-metallicity environments, supernova ejecta and the accelerated growth of grains in the interstellar medium. However, degeneracies between different evolutionary pathways remain when the total dust mass of galaxies is the only available observable. Here we report observations of the 2,175 Å dust attenuation feature, which is well known in the Milky Way and galaxies at z â‰Č 3 (refs. 9–11), in the near-infrared spectra of galaxies up to z ≃ 7, corresponding to the first billion years of cosmic time. The relatively short timescale implied for the formation of carbonaceous grains giving rise to this feature12 suggests a rapid production process, possibly in Wolf–Rayet stars or supernova ejecta

    THE SAMI GALAXY SURVEY: REVISITING GALAXY CLASSIFICATION THROUGH HIGH-ORDER STELLAR KINEMATICS

    Get PDF
    Recent cosmological hydrodynamical simulations suggest that integral field spectroscopy can connect the high-order stellar kinematic moments h3 (~skewness) and h4 (~kurtosis) in galaxies to their cosmological assembly history. Here, we assess these results by measuring the stellar kinematics on a sample of 315 galaxies, without a morphological selection, using 2D integral field data from the SAMI Galaxy Survey. A proxy for the spin parameter (λRe\lambda_{R_e}) and ellipticity (Ï”e\epsilon_e) are used to separate fast and slow rotators; there exists a good correspondence to regular and non-regular rotators, respectively, as also seen in earlier studies. We confirm that regular rotators show a strong h3 versus V/σV/\sigma anti-correlation, whereas quasi-regular and non-regular rotators show a more vertical relation in h3 and V/σV/\sigma. Motivated by recent cosmological simulations, we develop an alternative approach to kinematically classify galaxies from their individual h3 versus V/σV/\sigma signatures. We identify five classes of high-order stellar kinematic signatures using Gaussian mixture models. Class 1 corresponds to slow rotators, whereas Classes 2-5 correspond to fast rotators. We find that galaxies with similar λRe−ϔe\lambda_{R_e}-\epsilon_e values can show distinctly different h3-V/σV/\sigma signatures. Class 5 objects are previously unidentified fast rotators that show a weak h3 versus V/σV/\sigma anti-correlation. These objects are predicted to be disk-less galaxies formed by gas-poor mergers. From morphological examination, however, there is evidence for large stellar disks. Instead, Class 5 objects are more likely disturbed galaxies, have counter-rotating bulges, or bars in edge-on galaxies. Finally, we interpret the strong anti-correlation in h3 versus V/σV/\sigma as evidence for disks in most fast rotators, suggesting a dearth of gas-poor mergers among fast rotators.Comment: Accepted for Publication in The Astrophysical Journal. 35 pages and 30 figures, abstract abridged for arXiv submission. The key figures of the paper are: 7, 11, 12 , and 1

    The SAMI Galaxy Survey: a statistical approach to an optimal classification of stellar kinematics in galaxy surveys

    No full text
    Large galaxy samples from multiobject integral field spectroscopic (IFS) surveys now allow for a statistical analysis of the z ∌ 0 galaxy population using resolved kinematic measurements. However, the improvement in number statistics comes at a cost, with multiobject IFS survey more severely impacted by the effect of seeing and lower signal-to-noise ratio. We present an analysis of ∌1800 galaxies from the SAMI Galaxy Survey taking into account these effects. We investigate the spread and overlap in the kinematic distributions of the spin parameter proxy λRe as a function of stellar mass and ellipticity Δe. For SAMI data, the distributions of galaxies identified as regular and non-regular rotators with kinemetry show considerable overlap in the λRe–Δe diagram. In contrast, visually classified galaxies (obvious and non-obvious rotators) are better separated in λRe space, with less overlap of both distributions. Then, we use a Bayesian mixture model to analyse the observed λRe–log (M⋆/M⊙) distribution. By allowing the mixture probability to vary as a function of mass, we investigate whether the data are best fit with a single kinematic distribution or with two. Below log (M⋆/M⊙) ∌ 10.5, a single beta distribution is sufficient to fit the complete λRe distribution, whereas a second beta distribution is required above log (M⋆/M⊙) ∌ 10.5 to account for a population of low-λRe galaxies. While the Bayesian mixture model presents the cleanest separation of the two kinematic populations, we find the unique information provided by visual classification of galaxy kinematic maps should not be disregarded in future studies. Applied to mock-observations from different cosmological simulations, the mixture model also predicts bimodal λRe distributions, albeit with different positions of the λRe peaks. Our analysis validates the conclusions from previous, smaller IFS surveys, but also demonstrates the importance of using selection criteria for identifying different kinematic classes that are dictated by the quality and resolution of the observed or simulated data
    corecore