36 research outputs found

    Function and central projections of gustatory receptor neurons on the antenna of the noctuid moth Spodoptera littoralis

    Get PDF
    Chemosensory information is crucial for most insects to feed and reproduce. Olfactory signals are mainly used at a distance, whereas gustatory stimuli play an important role when insects directly contact chemical substrates. In noctuid moths, although the antennae are the main olfactory organ, they also bear taste sensilla. These taste sensilla detect sugars and hence are involved in appetitive learning but could also play an important role in food evaluation by detecting salts and bitter substances. To investigate this, we measured the responses of individual taste sensilla on the antennae of Spodoptera littoralis to sugars and salts using tip recordings. We also traced the projections of their neuronal axons into the brain. In each sensillum, we found one or two neurons responding to sugars: one NaCl-responsive and one water-sensitive neuron. Responses of these neurons were dose-dependent and similar across different locations on the antenna. Responses were dependent on the sex for sucrose and on both sex and location for glucose and fructose. We did not observe a spatial map for the projections from specific regions of the antennae to the deutocerebrum or the tritocerebrum/suboesophageal ganglion complex. In accordance with physiological recordings, back-fills from individual sensilla revealed up to four axons, in most cases targeting different projection zones

    An Expressed Sequence Tag collection from the male antennae of the Noctuid moth Spodoptera littoralis: a resource for olfactory and pheromone detection research

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Nocturnal insects such as moths are ideal models to study the molecular bases of olfaction that they use, among examples, for the detection of mating partners and host plants. Knowing how an odour generates a neuronal signal in insect antennae is crucial for understanding the physiological bases of olfaction, and also could lead to the identification of original targets for the development of olfactory-based control strategies against herbivorous moth pests. Here, we describe an Expressed Sequence Tag (EST) project to characterize the antennal transcriptome of the noctuid pest model, <it>Spodoptera littoralis</it>, and to identify candidate genes involved in odour/pheromone detection.</p> <p>Results</p> <p>By targeting cDNAs from male antennae, we biased gene discovery towards genes potentially involved in male olfaction, including pheromone reception. A total of 20760 ESTs were obtained from a normalized library and were assembled in 9033 unigenes. 6530 were annotated based on BLAST analyses and gene prediction software identified 6738 ORFs. The unigenes were compared to the <it>Bombyx mori </it>proteome and to ESTs derived from Lepidoptera transcriptome projects. We identified a large number of candidate genes involved in odour and pheromone detection and turnover, including 31 candidate chemosensory receptor genes, but also genes potentially involved in olfactory modulation.</p> <p>Conclusions</p> <p>Our project has generated a large collection of antennal transcripts from a Lepidoptera. The normalization process, allowing enrichment in low abundant genes, proved to be particularly relevant to identify chemosensory receptors in a species for which no genomic data are available. Our results also suggest that olfactory modulation can take place at the level of the antennae itself. These EST resources will be invaluable for exploring the mechanisms of olfaction and pheromone detection in <it>S. littoralis</it>, and for ultimately identifying original targets to fight against moth herbivorous pests.</p

    Feeding preference of Macrolophus caliginosus (Heteroptera : Miridae) on Bemisia tabaci and Trialeurodes vaporariorum (Homoptera : Aleyrodidae)

    No full text
    A study of predation choices of Macrolophus caliginosus Wagner (Heteroptera: Miridae) late instars and adults, when offered various developmental stages (eggs and nymphs) of the recently established whitefly Bemisia tabaci (Gennadius) (Homoptera: Aleyrodidae), was made based on two preference indices. In addition, prey choices of late instars when presented with three ratios of Trialeurodes vaporariorum (Westwood) (Homoptera: Aleyrodidae) and B. tabaci at a similar developmental stage (eggs, young or late instars) were assessed. M. caliginosus preferred older nymphs of B. tabaci than any other stage. It also chose T. vaporariorum over B. tabaci, unless the latter consisted of > 75% of the available prey. These results suggested that M. caliginosus might interfere with parasitoids such as Encarsia, Eretniocerus, or Amitus spp. because all three species emerge from the host pupal case. Furthermore, in mixed infestations, M. caliginosus preference for T. vaporariorum might either negatively affect the control of B. tabaci, or, contrarily, enhance the predator population, before a B. tabaci outbreak occurs in the greenhouse

    Interplay between FGF10 and Notch signalling is required for the self-renewal of pancreatic progenitors

    No full text
    International audienceRecent studies have shown that persistent expression of FGF10 in the developing pancreas of transgenic mice results in enhanced and prolonged proliferation of pancreatic progenitors, pancreatic hyperplasia and impaired pancreatic differentiation. These studies have also suggested that FGF10 prevents the differentiation of pancreatic progenitors by maintaining persistent Notch signalling. Here, we provide experimental evidence sustaining the capacity of FGF10 to induce the proliferation of pancreatic precursors, while preventing their differentiation. Using explant cultures of E10.5 isolated dorsal pancreatic epithelium, we found that FGF10 maintained Notch activation and induced the expansion of pancreatic precursors while blocking their differentiation. In addition, by using a gamma-secretase inhibitor, we were able to down-regulate the expression of Hes1, a target gene of the Notch pathway in explant cultures of pancreatic epithelium treated with FGF10. In such explants, the effect of FGF10 on the proliferation and maintenance of pancreatic progenitors was suppressed. These results demonstrate that activation of the Notch pathway is required as a downstream mediator of FGF10 signalling in pancreatic precursor cells

    Landspreading of liquid pig manure: III.1. survey of the pig farms in the "Bresse"

    No full text
    International audienc
    corecore