242 research outputs found

    Sierra Nevada snow melt from SMS-2

    Get PDF
    A film loop from SMS-2 imagery shows snow melt over the Sierra Nevadas from May 10 to July 8, 1975. The sequence indicates a successful application of geostationary satellite data for monitoring dynamic hydrologic conditions

    Sea surface and remotely sensed temperatures off Cape Mendocino, California

    Get PDF
    During September 3 to 5, 1979, a multisensor oceanographic experiment was conducted off Cape Mendocino, California. The purpose of this experiment was to validate the use of remote sensing techniques over an area along the U.S. west coast where coasted upwelling is known to be intense. Remotely sensed mutlispectral data, including thermal infrared imagery, were collected above an upwelling feature off Cape Mendocino. Data were acquired from the TIRNOS-N and NOAA-6 polar orbiting satellites, the NASA Ames Research Center's high altitude U-2 aircraft, and a U.S. Coast Guard C-130 aircraft. Supporting surface truth data over the same feature were collected aboard the National Oceanic and Atmospheric Administration (NOAA) ship, OCEANOGRAPHER. Atmospheric soundings were also taken aboard the ship. The results indicate that shipboard measurements of sea surface temperatures can be reproduction within 1 C or better through remote observation of absolute infrared radiance values (whether measured aboard the NOAA polar orbiting satellite, the U-2 aircraft, or the Coast Guard aircraft) by using appropriate atmospheric corrections. Also, the patterns of sea surface temperature which were derived independently from the various remote platforms provide a consistent interpretation of the surface temperature field

    Biological and physical oceanographic observations pertaining to the trawl fishery in a region of persistent coastal upwelling

    Get PDF
    An upwelling episode in the Point Sal region of the central California coast is examined by using data obtained by a data buoy. The episodes was interrupted by the abrupt abatement of the strong wind which promotes coastal upwelling. The mean hourly upwelling index is calculated to be higher than the 20 year mean monthly value. During 3 days of light wind commercial bottom trawl operations were possible. Shipboard estimates of chlorophyll content in surface waters during trawling show the high concentrations that are indicative of a rich biomass of phytoplankton, a result of the upwelling episode. Satellite imagery shows the extent of the upwelling water to be of the order of 100 km offshore; the result of many upwelling episodes. Shipboard echo sounder data show the presence of various delmersal species and of zooplakton; the latter graze on the phytoplankton in the upper euphotic layers. The fish catch data are recorded according to species for 2 days of trawling, and the catch per trawl hour is recorded

    Northern Monterey Bay upwelling shadow front : observations of a coastally and surface-trapped buoyant plume

    Get PDF
    Author Posting. © American Geophysical Union, 2009. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 114 (2009): C12013, doi:10.1029/2009JC005623.During the upwelling season in central California, northwesterly winds along the coast produce a strong upwelling jet that originates at Point Año Nuevo and flows southward across the mouth of Monterey Bay. A convergent front with a mean temperature change of 3.77 ± 0.29°C develops between the warm interior waters and the cold offshore upwelling jet. To examine the forcing mechanisms driving the location and movement of the upwelling shadow front and its effects on biological communities in northern Monterey Bay, oceanographic conditions were monitored using cross-shelf mooring arrays, drifters, and hydrographic surveys along a 20 km stretch of coast extending northwestward from Santa Cruz, California, during the upwelling season of 2007 (May–September). The alongshore location of the upwelling shadow front at the northern edge of the bay was driven by: regional wind forcing, through an alongshore pressure gradient; buoyancy forces due to the temperature change across the front; and local wind forcing (the diurnal sea breeze). The upwelling shadow front behaved as a surface-trapped buoyant current, which is superimposed on a poleward barotropic current, moving up and down the coast up to several kilometers each day. We surmise that the front is advected poleward by a preexisting northward barotropic current of 0.10 m s−1 that arises due to an alongshore pressure gradient caused by focused upwelling at Point Año Nuevo. The frontal circulation (onshore surface currents) breaks the typical two-dimensional wind-driven, cross-shelf circulation (offshore surface currents) and introduces another way for water, and the material it contains (e.g., pollutants, larvae), to go across the shelf toward shore.Funded primarily by the Gordon and Betty Moore Foundation and the David and Lucile Packard Foundation

    A novel method to improve temperature simulations of general circulation models based on ensemble empirical mode decomposition and its application to multi-model ensembles

    Get PDF
    A novel method based on the ensemble empirical mode decomposition (EEMD) method was developed to improve model performance. This method was evaluated by applying it to global surface air temperatures, which were simulated by eight general circulation models from the Coupled Model Intercomparison Project Phase 5 (CMIP5). The temperature simulations of the eight models were separated into their different components by EEMD. The model's performance improved after the first high-frequency component was removed from the original simulations by EEMD for each model, on both the global and continental scale. Moreover, EEMD was more effective in improving the model's performance compared to the wavelet transform method. The multi-model ensembles (MMEs) were calculated based on the EEMD-improved model simulations using the Average Ensemble Mean, Multiple Linear Regression, Singular Value Decomposition and Bayesian Model Averaging methods. The results showed that the MME forecasts performed better when the calculations were based on the EEMD-improved simulations as opposed to the original simulations on both the global and continental scale. Therefore, the results of the MME were further improved by using the EEMD-improved model simulations. This new method provides a simple way to improve model performance and can be easily applied to further improve MME simulations

    The Making of a Productivity Hotspot in the Coastal Ocean

    Get PDF
    Highly productive hotspots in the ocean often occur where complex physical forcing mechanisms lead to aggregation of primary and secondary producers. Understanding how hotspots persist, however, requires combining knowledge of the spatio-temporal linkages between geomorphology, physical forcing, and biological responses with the physiological requirements and movement of top predators.) off the Baja California peninsula, Mexico.We have identified the set of conditions that lead to a persistent top predator hotspot, which increases our understanding of how highly migratory species exploit productive regions of the ocean. These results will aid in the development of spatially and environmentally explicit management strategies for marine species of conservation concern

    Classification of the nucleolytic ribozymes based upon catalytic mechanism

    Get PDF
    The nucleolytic ribozymes carry out site-specific RNA cleavage reactions by nucleophilic attack of the 2’-oxygen atom on the adjacent phosphorus with an acceleration of a million-fold or greater. A major part of this arises from concerted general acid-base catalysis. Recent identification of new ribozymes has expanded the group to a total of nine and this provides a new opportunity to identify sub-groupings according to the nature of the general base and acid. These include nucleobases, hydrated metal ions, and 2’-hydroxyl groups. Evolution has selected a number of different combinations of these elements that lead to efficient catalysis. These differences provide a new mechanistic basis for classifying these ribozymes

    Reactivity-Dependent PCR: Direct, Solution-Phase in Vitro Selection for Bond Formation

    Get PDF
    In vitro selection is a key component of efforts to discover functional nucleic acids and small molecules from libraries of DNA, RNA, and DNA-encoded small molecules. Such selections have been widely used to evolve RNA and DNA catalysts and, more recently, to discover new reactions from DNA-encoded libraries of potential substrates. While effective, current strategies for selections of bond-forming and bond-cleaving reactivity are generally indirect, require the synthesis of biotin-linked substrates, and involve multiple solution-phase and solid-phase manipulations. In this work we report the successful development and validation of reactivity-dependent PCR (RDPCR), a new method that more directly links bond formation or bond cleavage with the amplification of desired sequences and that obviates the need for solid-phase capture, washing, and elution steps. We show that RDPCR can be used to select for bond formation in the context of reaction discovery and for bond cleavage in the context of protease activity profiling.Chemistry and Chemical Biolog

    The Universal Plausibility Metric (UPM) & Principle (UPP)

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Mere possibility is not an adequate basis for asserting scientific plausibility. A precisely defined universal bound is needed beyond which the assertion of <it>plausibility</it>, particularly in life-origin models, can be considered operationally falsified. But can something so seemingly relative and subjective as plausibility ever be quantified? Amazingly, the answer is, "Yes." A method of objectively measuring the plausibility of any chance hypothesis (The Universal Plausibility Metric [UPM]) is presented. A numerical inequality is also provided whereby any chance hypothesis can be definitively falsified when its UPM metric of ξ is < 1 (The Universal Plausibility Principle [UPP]). Both UPM and UPP pre-exist and are independent of any experimental design and data set.</p> <p>Conclusion</p> <p>No low-probability hypothetical plausibility assertion should survive peer-review without subjection to the UPP inequality standard of formal falsification (ξ < 1).</p
    corecore