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ABSTRACT

A novel method based on the ensemble empirical mode decomposition (EEMD) method was developed to

improve model performance. This method was evaluated by applying it to global surface air temperatures,

which were simulated by eight general circulation models from the Coupled Model Intercomparison Project

Phase 5 (CMIP5). The temperature simulations of the eight models were separated into their different

components by EEMD. The model’s performance improved after the first high-frequency component was

removed from the original simulations by EEMD for each model, on both the global and continental scale.

Moreover, EEMD was more effective in improving the model’s performance compared to the wavelet

transform method. The multi-model ensembles (MMEs) were calculated based on the EEMD-improved model

simulations using the Average Ensemble Mean, Multiple Linear Regression, Singular Value Decomposition

and Bayesian Model Averaging methods. The results showed that the MME forecasts performed better when

the calculations were based on the EEMD-improved simulations as opposed to the original simulations on

both the global and continental scale. Therefore, the results of the MME were further improved by using the

EEMD-improved model simulations. This new method provides a simple way to improve model performance

and can be easily applied to further improve MME simulations.
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1. Introduction

Atmosphere�Ocean General Circulation Models (AOGCMs)

are powerful tools that can enhance our understanding

of climate variability and project future climate changes.

A number of AOGCMs have been used to simulate past

climate changes between 1850 and 2005, and to predict

future climate changes from 2006 to 2100 under different

scenarios. However, it is very difficult to identify the most

reliable model simulation as different AOGCMs have

different performance levels in different regions (Giorgi

and Mearns, 2003; Chen et al., 2006). In general, a good

agreement with past simulations builds confidence in the

reliability of future projections (Reifen and Toumi, 2009).

Consequently, improving the precision of past simulations

by post-processing of model simulations is crucial for

future predictions.

Climate model evaluation methods are based on con-

ventional statistics, including correlation and the distance

between the simulated and observed data. The most com-

monly used conventional statistics are correlation, bias and

Root Mean Square Error (RMSE). Correlation indicates
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similarity in variation, while bias and RMSE evaluate the

distance between the simulated and observed data. A model

has better performance when its simulation has higher

correlation, lower bias, and lower RMSE with the observed

data than other models.

Multi-model ensemble (MME) methods have been the

traditional approach to improving model simulations. After

assembling the model results based on MME methods,

MME simulations produce more accurate results than

any single model (Gates et al., 1999; Doblas Reyes et al.,

2005; Hagedorn et al., 2005; Weisheimer et al., 2005,

2009; Weigel et al., 2008; Annan and Hargreaves, 2010;

Semenov and Stratonovitch, 2010). MME methods include

the arithmetic ensemble mean (AEM) and weighted en-

semble mean methods. The AEM performs better than

any individual model as it integrates the simulated values

of multi-models and reduces the simulated error by

partly offsetting positive and negative biases of different

models. However, the level of improvement achieved by

using the AEM has potential problems since there are no

guarantees that the errors shared by the models will cancel

out (Reifen and Toumi, 2009). Weighted ensemble mean

methods are based on the concept that greater weight is

given to models that perform better during the train-

ing period. Methods such as Multiple Linear Regression

(Krishnamurti et al., 1999, 2000; Kharin and Zwiers,

2002; Shin and Krishnamurti, 2003), Singular Value Decom-

position (SVD, Feddersen et al., 1999; Yun et al., 2003),

reliability ensemble averaging (REA, Giorgi and Mearns,

2002, 2003), and Bayesian Model Averaging (BMA,

Raftery et al., 2005; Min and Hense, 2006a, 2006b; Berliner

and Kim, 2008) have been shown to produce more accurate

results than the AEM when simulating past climate

conditions.

Uncertainties in models, which include the initial con-

ditions, boundary conditions, parameter and structural

uncertainties (Tebaldi and Knutti, 2007), cause errors

between model simulations and observations (Collins et al.,

2011). These errors are present in all the components of

model simulations, when the model simulations are sepa-

rated into their different components. However, most

errors are contained in certain high-frequency components

because the long-term observed trend is well simulated by

AOGCMs (IPCC, 2007). Hence, these errors could be

reduced if the components containing the most errors are

removed from the original simulations, and this represents

a novel way to improve model performance. The model’s

simulations are non-stationary series because they con-

tain the long-term trend. Ensemble Empirical Mode

Decomposition (EEMD) is a method to decompose non-

stationary signals into different modes. It has previously

been proven to be effective in climatic research (Huang and

Wu, 2008; Wu et al., 2008; Qian et al., 2009; Franzke, 2010;

Breaker and Ruzmaikin, 2011). The model performance

would be improved following the removal of the unrelated

component. Furthermore, this improvement in model

simulations could also be used in MMEs to improve

ensemble forecasts. Accordingly, the main goals of this

study were: (1) to present improvements in temperature

simulations of GCMs with the new method, which was

developed based on EEMD; and (2) to apply the EEMD-

improved model simulations to improve the MMEs and

evaluate them using conventional statistics.

2. Data and method

2.1. Climate data

Global monthly mean temperature data simulated by

eight different AOGCMs (Table 1) between 1901 and

2100 were retrieved from the Coupled Model Intercompar-

ison Project Phase 5 (CMIP5) website (http://www-pcmdi.

llnl.gov/ipcc/about_ipcc.php), where a more detailed ex-

planation of each model can also be found. Since there

is no consistency in the number of ensemble members

among the models and only one simulation is available

for some models, model outputs from CMIP5 historical

r1i1p1 (one ensemble member per model) were used in this

study. Monthly observation data of global mean surface

air temperature over land were obtained from the Cli-

mate Research Unit (CRU) TS 3.0 dataset (www.cru.uea.

ac.uk) on a 18�18 resolution. Because the temperatures

simulated by different models had different resolutions, the

model data were interpolated to 18�18 resolution using

bilinear interpolation and masked with the observed grid

prior to analysis. The anomalies of annual mean tempera-

tures were calculated for the observation and the model

simulations.

Table 1. Brief description of the eight GCMs

Model name Resolution Country/Institute

BCC-CSM1-1 (BCC) 1.8758�1.8758 China/BCC

CanESM2 (CAN) 2.08�2.08 Canada/CCCMA

CNRM-CM5 (CNRM) 2.88�2.88 France/CNRM

GISS-E2-H (GISSH) 4.08�5.08 American/GISS

GISS-E2-R (GISSR) 5.08�4.08 American/GISS

INM-CM4 (INM) 5.08�4.08 Russia/INM

IPSL-CM5A-LR (IPSL) 3.758�2.58 France/IPSL

NorESM1-M (NOR) 3.758�3.758 Norway/NCC
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2.2. Empirical ensemble mode decomposition

Huang et al. (1998) developed the Empirical Mode De-

composition (EMD) method. EMD is a general signal

processing method used for analysing nonlinear and non-

stationary time series. It is an adaptive, data-driven and

highly efficient algorithm used to decompose a time series

into its intrinsic modes of oscillation. The central idea

of EMD is to decompose a time series F(t) into a finite

and often small number of intrinsic mode functions

(IMFs),

F tð Þ ¼
Xn

j¼1
IMFj þ rn; (1)

where n is the number of IMFs; rn is the residue of the

time series x(t). IMF is defined as any function having an

equal number of extreme and zero-crossings (or differing at

most by one), and also having symmetric envelopes defined

by the local minima and maxima, respectively.

The procedure of EMD is implemented through a sifting

process: (1) Identify all of the local extremes in the time

series F(t) and connect all of the local maxima and minima

with a cubic spline as the upper (lower) envelope. (2)

Calculate the difference between the data F(t) and the local

mean of upper and lower envelopes as the first component

h1. (3) Treat h1 as the data and repeat steps (1) and (2) until

the upper and lower envelopes are symmetric with respect

to zero mean under certain criteria. Then, the final h1j is

designated as IMF1. (4) The rest of the data r1�F(t)�
IMF1. Treat r1 as new data F(t) and repeat steps (1), (2)

and (3). The sifting process is completed when the residue

rn becomes a monotonic function. More details of the

EMD method can be found in the works of Huang et al.

(1998, 1999).

However, EMD suffers from weaknesses, such as the

frequent appearance of mode mixing. In an attempt to

address these issues, Wu and Huang (2009) introduced the

Ensemble EMD (EEMD) method to alleviate some of the

common problems of EMD such as mode mixing and

increasing robustness of EMD. EEMD was estimated by

averaging numerous EMD runs with the addition of some

Gaussian noise. By averaging the different decompositions,

the noise was averaged out and an estimate of the true

decomposition was calculated with a confidence estimate.

Using the EEMD algorithm, the signal could be decom-

posed into its intrinsic modes of oscillation.

The standard deviation of added noise and the ensemble

number of EMD were parameters in the EEMD procedure.

The sensitivity of the decomposition of data to the

amplitude of noise is often small within a certain window

of noise amplitude (Wu et al., 2007; Wu and Huang, 2009).

Therefore, noise with a standard deviation of 0.2 was

added. The ensemble size was set at 1000 in every run to

ensure the stability of results.

2.3. Wavelets transform method (WTM)

Wavelets are functions that satisfy certain mathematical

requirements that decompose the signals into different

frequency components, so that each component can be

analysed with a resolution matched to its scale. In terms of

some elementary wavelet functions Wf(a,b), wavelet trans-

form decomposes a signal F(t) derived from a ‘mother

wavelet’ v(t) by dilation and translation,

Wf a; bð Þ ¼

ffiffiffi
1

a

s Z þ1

�1
F tð Þxab

t� b

a

� �
dt; (2)

where Wf(a,b) is the wavelet coefficients; vab is the mother

wavelet; a is scale factor (dilation); b is position factor

(translation); F(t) is the signal (models’ projections in this

study), where in t is time.

Based on the wavelet prototype function called the

mother wavelet, an original signal is decomposed into ap-

proximate and detailed coefficients by the wavelet trans-

form (Graps, 1995). Approximate coefficients are obtained

with a low-frequency version of the mother wavelet while

detailed coefficients are obtained with a high-frequency

version of the same wavelet (S�Ca1�Cd1�Ca2�
Cd2�Cd1�Can�Cdn�. . .�Cd1, where S represents the

original signal, Ca1, Ca2,. . ., Can represents different

approximate coefficients, Cd1, Cd2, Cd3,. . ., Cdn repre-

sents different detailed coefficients). The low- and high-

frequency signals are reconstructed based on approximate

and detailed coefficients, respectively. Thus, wavelet trans-

form can decompose a signal into high- and low-frequency

signals (S�a1�d1�a2�d2�d1�an�dn�. . .�d1, where

a1, a2,. . .,an represents different low frequency signals, d1,
d2,. . .,dn represents different high frequency signals).

Several groups of functions can be used as mother

wavelets, all of which were tested because the decomposed

results depended on the mother wavelet. The best results

were obtained using the Daubechies wavelet with three

vanishing moments (Db3, Daubechies, 1988, 1992). Thus,

the original signals were transformed by wavelet function

Db3 in the current study.

2.4. Improvement in MME simulations

In this study, the temperature simulation could be im-

proved by the EEMD method for every model. Then,

MME simulations, calculated using the EEMD-improved

model simulations, were compared with the MME simula-

tions, which were calculated using the original model
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simulations to investigate whether MME simulations were

also improved. The MME methods used in this research

were the AEM, the Multiple Linear Regression method,

SVD, and BMA, which are simple but commonly used in

MME simulations. Brief descriptions of the MME methods

are provided below:

AEM

The AEM is defined by

Y tð Þ ¼ 1

N

XN

k¼1
Fk tð Þ; (3)

where Y(t) is an MME projection for time t, N is the total

number of AOGCMs, and Fk(t) is a projection of the kth

model for time t.

Multiple Linear Regression (Linear)

This method is defined as

Y tð Þ ¼ a0 þ
XN

k¼1
akFk tð Þ; (4)

where Y(t) is an MME projection for time t, Fk(t) is a

projection of the kth model for time t, a0 is a constant,

and ak is a weight for model k. The coefficients a0 and

–0.4

–0.3

–0.2

–0.1

0

0.1

0.2

0.3

0.4

19
01

19
06

19
11

19
16

19
21

19
26

19
31

19
36

19
41

19
46

19
51

19
56

19
61

19
66

19
71

19
76

19
81

19
86

19
91

19
96

20
01

T
em

pe
ra

tu
re

 a
no

m
al

y 
(°

C
)

T
em

pe
ra

tu
re

 a
no

m
al

y 
(°

C
)

T
em

pe
ra

tu
re

 a
no

m
al

y 
(°

C
)

T
em

pe
ra

tu
re

 a
no

m
al

y 
(°

C
)

T
em

pe
ra

tu
re

 a
no

m
al

y 
(°

C
)

T
em

pe
ra

tu
re

 a
no

m
al

y 
(°

C
)

Year

C1

B1 r=0.034

–0.2

–0.15

–0.1

–0.05

0

0.05

0.1

0.15

0.2

19
01

19
06

19
11

19
16

19
21

19
26

19
31

19
36

19
41

19
46

19
51

19
56

19
61

19
66

19
71

19
76

19
81

19
86

19
91

19
96

20
01

Year

C3
B3r=0.259

–0.3

–0.2

–0.1

0

0.1

0.2

0.3

19
01

19
06

19
11

19
16

19
21

19
26

19
31

19
36

19
41

19
46

19
51

19
56

19
61

19
66

19
71

19
76

19
81

19
86

19
91

19
96

20
01

Year

C2

B2r=0.223

–0.2

–0.15

–0.1

–0.05

0

0.05

0.1

0.15

19
01

19
06

19
11

19
16

19
21

19
26

19
31

19
36

19
41

19
46

19
51

19
56

19
61

19
66

19
71

19
76

19
81

19
86

19
91

19
96

20
01

Year

C4
B4r=0.814

–0.25

–0.2

–0.15

–0.1

–0.05

0

0.05

0.1

0.15

0.2

0.25

19
01

19
06

19
11

19
16

19
21

19
26

19
31

19
36

19
41

19
46

19
51

19
56

19
61

19
66

19
71

19
76

19
81

19
86

19
91

19
96

20
01

Year

C5

B5

r=0.983

–0.8

–0.6

–0.4

–0.2

0

0.2

0.4

0.6

0.8

1

19
01

19
06

19
11

19
16

19
21

19
26

19
31

19
36

19
41

19
46

19
51

19
56

19
61

19
66

19
71

19
76

19
81

19
86

19
91

19
96

20
01

Year

C6

B6
r=0.992

Fig. 1. The six IMFs (components) of the observation (CRU) decomposed by the EEMD method (C1 minus C6) and the six IMFs of

model BCC decomposed by the EEMD method (B1 minus B6). The correlations (r) were calculated between the different IMFs of BCC

and their corresponding IMFs of CRU.
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ak are calculated using a multiple regression method

(Krishnamurti et al., 1999, 2000).

SVD

The SVD method is defined as

Y tð Þ ¼
XN

k¼1
akFk tð Þ; (5)

where Y(t) is an MME prediction for time t, Fk(t) is

a forecast of the kth model for time t, and ak is a weight

for model k. The coefficient ak is calculated using the

SVD method to solve the regression function between

the model simulations and the observed data. More

details of the SVD algorithm for obtaining the coefficient

can be found in the study by Yun et al. (2003).

BMA (Bayesian)

The forecast probability density function (PDF) p(y) by

BMA is given as

p yjx1 . . . xkð Þ ¼
XN

k¼1
wkpk yjxkð Þ; (6)

where wk is the weight of the kth model and pk(yjxk) is the

forecast PDF based on predictor xk. The pk(yjxk) is the

conditional PDF and is approximated by a normal

distribution centred at a linear function of the predictor,

ak�bkxk. Therefore, the BMA mean is the conditional

expectation of y given the forecast. Thus, the deterministic

BMA ensemble prediction is calculated as

E yjx1 . . . xkð Þ ¼
XN

k¼1
wk ak þ bkFkð Þ; (7)

where ak and bk can be obtained by the regression between

the xk and y in the training period. The weights wk are

calculated using the Expectation�Maximization (EM)

algorithm. Details of the EM algorithm can be found in

Raftery et al. (2005) and Duan et al. (2007).

3. Results

3.1. Decomposition of model simulations by EEMD

and WTM

Both global averaged annual observed data (CRU data)

and temperature series simulated by eight AOGCMs

from 1901 to 2005 were decomposed using EEMD. Each

temperature series was decomposed to six IMFs (compo-

nents). Different IMFs reflected the variations in different

frequencies. As the simulations were decomposed by the

filter methods in the same way for every model, only

the results of the BCC-CSM1-1 model (BCC is a model

developed by the Beijing Climate Center) are used as an

example in this paper. The IMFs of BCC and the observed

data (CRU) are shown in Fig. 1. Each IMF stands for the

variation of frequencies at certain timescales. The corre-

lations between the corresponding IMFs of CRU and

BCC were calculated (Fig. 1). B1 (IMF1 of BCC) did not

correlate well with C1 (IMF1 of CRU), while other IMFs

of BCC were highly correlated with their corresponding

IMFs of CRU. Thus, B1 was removed from the original

BCC simulations. After the removal of B1, the statistical

correlation between BCC and CRU improved. Therefore,

the IMF1 component was removed from the model

simulation to improve the model’s performance. Although

IMF1 was removed, the filtered series was similar to the
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Fig. 2. The global mean temperature, which was simulated by the BCC-CSM1-1 (BCC) model, its EEMD-improved simulations (BCC

minus EEMD), its WTM-improved simulations (BCC minus WTM) and the observation (CRU) from 1901 to 2005.
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original simulations and large differences between the

model simulation and CRU were smoothed (Fig. 2). The

simulated and observed temperatures were also decom-

posed by WTM. The optimal results were also obtained by

removing the highest frequency signals from the original

signals. Thus, the highest frequency signals were removed

by both EEMD and WTM.

3.2. Application in the simulation of every model

3.2.1. Global scale. Global average annual temperature

simulated by eight AOGCMs between 1901 and 2005 were

decomposed using EEMD. The statistics (correlation, bias,

and RMSE) between model simulations and CRU were cal-

culated to investigate the improvement of model simulations
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Fig. 3. Correlation, bias and RMSE of the original model simulations, EEMD-improved series and WTM-improved series for every

model at the global scale.
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by EEMD (Fig. 3). The correlation coefficient increased

after being filtered by EEMD for every model. The incre-

ment in correlation was more obvious for the CNRM,

CAN, GISSH, and NOR models. The correlation coeffi-

cients increased over 0.03 for most models (Table 2). The

percentage improvement in correlation was greater than or

equal to 5% for CAN (7%), CNRM (12%), GISSH (5%),

IPSL (5%), and NOR (9%). Bias and RMSE, which

indicated the distance and error between model simulations

and the observation, were reduced after they were filtered by

EEMD for every model (Fig. 3). After being filtered by

EEMD, the decrease in the percentage of bias and RMSE

was almost 5% for each model and the percentage decre-

ments were greater than 15% for some models (Table 2).

After the model simulations were filtered byWTM (Fig. 3),

the increase in correlation coefficient and decrease in both

bias and RMSE showed that the model performances

could be improved using WTM. However, the increase in

correlation and decrease in bias and RMSE were less when

using WTM as opposed to EEMD. Thus, WTM was less

effective than EEMD in improving the model performances

on the global scale.

3.2.2. Continental scale. The improvement in model

performance was also checked on the regional scale. The

global land area was divided into six continents except

Antarctica. Regional average temperatures were calculated

for each continent between 1901 and 2005. The regional

temperature series was decomposed using EEMD and

WTM for every model. The statistics (correlation, bias,

and RMSE) between model simulations and CRU data

were calculated to test the model performance on the con-

tinental scale (Fig. 4). Increased correlation was found in

every continent for different models when the EEMD mode

elimination method was used. The improvements in corre-

lation were especially obvious in Africa, Asia and Europe.

In each continent, the percentage increment in correlation

was greater than 15% in some models. The bias and RMSE

decreased in the EEMD-improved series (Fig. 4). The

reduction in bias and RMSE were low in Africa and

Asia. A significant decrease in bias was found in Australia

and Europe. The percentage decrements were greater than

10% for some models in Australia and Europe. The

decrease of RMSE was more obvious in Australia, Europe,

and North America. In these continents, the percentage

decrease in RMSE was greater than 5% for most models.

Overall, the bias and RMSE decreased more in Australia,

Europe and North America than in the other continents.

An increase in correlation was found in every continent

for different models when WTM was used (Fig. 4). How-

ever, the bias and RMSE changed little when WTM was

used. Moreover, the increase in correlation and decrease in

bias and RMSE were less when WTM was used than when

EEMD was used in most continents for most models. Thus,

WTM was not as effective as EEMD in improving the

model simulations on the continental scale.

3.3. Application of improved model simulations in

MMEs

3.3.1. Improvement of MMEs calculated based on the

improved model simulations on the global scale. Because

EEMD was more efficient than WTM with regards to im-

proving model performances, the EEMD-improved model

simulations were used to calculate the MME simulations

based on four MME methods (AEM, Linear, SVD, and

Bayesian). The MME simulations, which were calculated

using EEMD-improved model simulations, were compared

with those calculated using the original model simulations

to investigate the improvement in MME simulations. The

statistical parameters (correlation, bias, and RMSE) were

calculated for MME simulations using EEMD-improved

model simulations and original model simulations (Fig. 5).

The MME simulations based on EEMD-improved model

simulations were more closely correlated than the MME

simulations based on the original simulations. The correla-

tion coefficients increased by approximately 0.01�0.02 when
EEMD-improved simulations were used (Table 3). The per-

centage increment in correlation was between 1 and 2.5%.

The bias and RMSE of the ensembles based on EEMD-

improved simulations were lower than the ensembles based

on the original simulations. The percentage decrements in

bias and RMSE were between 4 and 6% (Table 3).

3.3.2. Improvement of MMEs on the continental scale.

On the continental scale, the improvement in MME results

was also investigated by comparing the MME simulation

Table 2. Statistics (correlation, bias, RMSE) between EEMD-

improved model series and original model series (E minus O) and

its percentage variation [calculated by (E�O)/O�100]

Correlation Bias RMSE

E minus O % E minus O % E minus O %

BCC 0.02 3 0.03 13 0.03 10

CAN 0.06 7 0.04 19 0.05 17

CNRM 0.09 12 0.04 19 0.05 19

GISSH 0.04 5 0.02 9 0.02 9

GISSR 0.03 3 0.01 7 0.02 7

INM 0.02 3 0.02 11 0.01 6

IPSL 0.04 5 0.04 16 0.04 13

NOR 0.07 9 0.04 22 0.05 20
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Fig. 4. Correlation, bias and RMSE of original model simulations, EEMD-improved series and WTM-improved series for every model

in the six continents.
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calculated using the EEMD-improved model simulations

with those calculated based on the original model simula-

tions. The statistical correlation between the MME simula-

tions and observations is shown in Fig. 6. The ensemble

results based on the EEMD-improved series had better

correlation than the ensemble results based on the original

series. The maximum increase in the correlation coefficient

was greater than 0.2, with an increase of greater than

0.05 for many continents. For some continents, the per-

centage increment in correlation was greater than 10%.

For EEMD-improved simulations, the increase in correla-

tion was more obvious in Europe, South America, and
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Fig. 5. The statistics (correlation, bias, and RMSE) of MME forecasts calculated by the four MME methods (Bayesian, Linear, SVD,

and AEM) based on the original and EEMD-improved model simulations at the global scale.

A NOVEL METHOD TO IMPROVE TEMPERATURE SIMULATIONS 9



North America. The bias and RMSE of ensemble forecasts

were reduced when they were calculated based on the

EEMD-improved simulations (Fig. 6). The bias and RMSE

decreased by in excess of 0.04 and the percentage decre-

ment was greater than 5% in many continents for the

EEMD-improved simulations. Overall, the MME simula-

tions could be further improved when calculated using the

EEMD-improved temperature simulations on the conti-

nental scale.

3.4. Application to future scenarios exemplified by

global mean temperature

Future global mean temperatures were simulated from

2006 to 2100 by AOGCMs under different forcing scenar-

ios. The anomalies of these simulations were calculated

and improved with the EEMD mode elimination method

(Fig. 7). The ensemble mean temperature under scenario

RCP (Representative Concentration Pathways) 2.6 showed

a similar trend of increase as its EEMD-improved series.

However, the ensemble mean temperatures under RCP4.5

and RCP8.5 showed lower trends of increase than their

EEMD-improved series. Thus, the increasing temperature

trend was slightly underestimated.

4. Discussion

A new method based on EEMD was developed to improve

the temperature simulations of AOGCMs. EEMD, which

can decompose time series into different frequency signals,

was used to decompose the AOGCM temperature simula-

tions. The signal could be decomposed into its intrinsic

modes of oscillation by EEMD. The numbers of IMFs

were certain when data were provided, as the EEMD is a

data-driven, adaptive data method. The model simulations

were adaptively decomposed into six IMFs by EEMD. The

model simulations contained a climate change signal and

inter-annual variations. Most signals contained in IMF1

were inter-annual signals. On the one hand, the IMFs of

the model simulation were highly correlated with the cor-

responding IMFs of the observation, except IMF1; while

on the other hand, GCMs were less effective in simulating

the temperature below the inter-annual time scale. Thus,

large differences between the original model simulation

and the observation were reduced by removal of IMF1.

The model simulation was more approximate to the observa-

tion after IMF1 was removed from the original model

simulation.

In order to compare the EEMD method with the other

filter method, the results of WTM were also presented.

However, WTM was found to be less effective than EEMD

in improving the model performances in this study. Thus,

the simulated annual temperatures were improved by

EEMD on global and continental scales. The correlations

increased by 5% for most models on the global scale. The

bias and RMSE decreased significantly with the increase

in correlation. This suggests that the model performance

was improved by the EEMD mode elimination method

when applied to these models. The improvement of model

performance was also shown on the continental scale.

Almost all model results were poor on the continental scale

when compared to the global-scale results. However, the

improvement of model performance was larger on the

continental scale than on the global scale, especially for

the models that had low correlation coefficients in some

continents. Overall, the EEMD mode elimination methods

improved the model performance on global and continental

scales for all models.

MME simulations were calculated based on the EEMD-

improved simulations by the AEM, Linear, SVD and

Bayesian methods. An improvement in MME simulations

was found on both the global and continental scales. The

MME methods gave weights to different models. Thus, it is

not surprising that the MME simulations were improved

when the simulation of each model was improved. The

correlation coefficient increased by between 0.01 and 0.02

only on the global scale. This is probably because the

correlation coefficients were high enough already (r�0.83)

and were therefore difficult to improve. The correlation

improvements of existing MME methods (Peng et al., 2002;

Pagowski et al., 2005; Min and Hense, 2006) were also

marginal when compared with the model that yielded the

best performance value. Despite this, the improvement

in correlation still accounted for 1�2% variation of the

Table 3. Differences between the statistics (correlation, bias,

RMSE) between ensemble forecasts based on EEMD-improved

model series and original model series (E minus O) and the

percentage differences [calculated by (E�O)/O�100]

Statistics E minus O Percentage difference

Correlation Bayesian 0.009 1.094

Linear 0.017 2.000

SVD 0.021 2.481

AEM 0.009 1.094

Bias Bayesian �0.006 4.316

Linear �0.010 6.844

SVD �0.009 6.769

AEM �0.006 4.644

RMSE Bayesian �0.006 3.501

Linear �0.009 4.823

SVD �0.011 6.122

AEM �0.010 3.606
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original correlation coefficients. Although the correlation

coefficients changed only slightly, there was an obvious

decrease in bias and RMSE. This suggests that the MME

simulations were improved on the global scale. Moreover,

the improvements in correlation were more significant on

the continental scale than the global scale. The percentage

increments in correlation were greater than 5% in many

continents. Therefore, the correlation improved more

readily on the continental scale than on the global scale.

There was an obvious decrease in bias and RMSE on the

continental scale when based on the EEMD-improved

simulations. The decrease in bias and RMSE, with the

increase in correlation, indicated a substantial improve-

ment of the MME simulations on the continental scale.
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Overall, the results of the MME simulations were further

improved by application of the EEMD mode elimination

method on both the global and continental scales. How-

ever, it should be stated that the method was only used in

temperature simulations by each model; the improvement

in precipitation simulations will be reported in future work.
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Chen, D., Achberger, C., Räisänen, J. and Hellström, C. 2006.

Using statistical downscaling to quantify the GCM-related

uncertainty in regional climate change scenarios: a case study

of Swedish precipitation. Adv. Atmos. Sci. 23, 54�60.
Collins, M., Booth, B. B., Bhaskaran, B., Harris, G. R., Murphy,

J. M. and co-authors. 2011. Climate model errors, feedbacks

and forcings: a comparison of perturbed physics and multi-

model ensembles. Clim. Dynam. 36, 1737�1766.
Daubechies, I. 1988. Orthonormal bases of compactly supported

wavelets. Commun. Pure Appl. Math. 41, 909�996.
Daubechies, I. 1992. Symmetry for Compactly Supported Wavelet

Bases. In: Ten lectures on wavelets. Society for Industrial and

Applied Mathematics, Philadelphia, pp. 251�287.
Doblas Reyes, F. J., Hagedorn, R. and Palmer, T. N. 2005. The

rationale behind the success of multi-model ensembles in

seasonal forecasting�II. Calibration and combination. Tellus

A. 57, 234�252.
Duan, Q., Ajami, N. K., Gao, X. and Sorooshian, S. 2007. Multi-

model ensemble hydrologic prediction using Bayesian model

averaging. Adv Water Resour. 30, 1371�1386.
Feddersen, H., Navarra, A. and Ward, M. N. 1999. Reduction of

model systematic error by statistical correction for dynamical

seasonal predictions. J Clim. 12, 1974�1989.
Franzke, C. 2010. Long-range dependence and climate noise

characteristics of Antarctic temperature data. J. Clim. 23, 6074�
6081.

Gates, W. L., Boyle, J. S., Covey, C., Dease, C. G., Doutriaux,

C. M. and co-authors. 1999. An overview of the results of the

Atmospheric Model Intercomparison Project (AMIP I). Bull.

Am. Meteorol. Soc. 80, 29�55.
Giorgi, F. and Mearns, L. O. 2002. Calculation of average,

uncertainty range, and reliability of regional climate changes

from AOGCM simulations via the ‘‘reliability ensemble aver-

aging’’ (REA) method. J. Clim. 15, 1141�1158.
Giorgi, F. and Mearns, L. O. 2003. Probability of regional climate

change based on the reliability ensemble averaging (REA)

method. Geophys. Res. Lett. 30, 1629.

Graps, A. 1995. An introduction to wavelets. Comput. Sci. Eng. 2,

50�61.
Hagedorn, R., Doblas Reyes, F. J. and Palmer, T. N. 2005.

The rationale behind the success of multi-model ensembles in

seasonal forecasting�I. Basic concept. Tellus A. 57, 219�233.
Huang, N. E., Shen, Z. and Long, S. R. 1999. A new view of

nonlinear water waves: the Hilbert spectrum 1. Annu. Rev. Fluid.

Mech. 31, 417�457.
Huang, N. E., Shen, Z., Long, S. R., Wu, M. C., Shih, H. H. and

co-authors. 1998. The empirical mode decomposition and the

Hilbert spectrum for nonlinear and non-stationary time series

analysis. Proc. Roy. Soc. Lond. 454, 903�995.
Huang, N. E. and Wu, Z. 2008. A review on Hilbert-Huang

transform: method and its applications to geophysical studies.

Rev. Geophys. 46, G2006.

IPCC (Intergovernmental Panel on Climate Change). 2007.

Climate Change 2007: Synthesis Report. Cambridge University

Press, Cambridge.

Kharin, V. V. and Zwiers, F. W. 2002. Climate predictions with

multimodel ensembles. J. Clim. 15, 793�799.
Krishnamurti, T. N., Kishtawal, C. M., LaRow, T. E., Bachiochi,

D. R., Zhang, Z. and co-authors. 1999. Improved weather

and seasonal climate forecasts from multimodel superensemble.

Science. 285, 1548�1550.
Krishnamurti, T. N., Kishtawal, C. M., Shin, D. W. and Williford,

C. E. 2000. Improving tropical precipitation forecasts from a

multianalysis superensemble. J. Clim. 13, 4217�4227.
Min, S. K. and Hense, A. 2006a. A Bayesian approach to climate

model evaluation and multi-model averaging with an applica-

tion to global mean surface temperatures from IPCC AR4

coupled climate models. Geophys. Res. Lett. 33, L8708.

Min, S. K. and Hense, A. 2006b. A Bayesian assessment of climate

change using multimodel ensembles. Part I: global mean surface

temperature. J. Clim. 19, 3237�3256.
Pagowski, M., Grell, G. A., McKeen, S. A., Dévényi, D., Wilczak,
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