523 research outputs found

    The Academic Collaborative Center Older Adults:A description of co-creation between science, care practice and education with the aim to contribute to person-centered care for older adult

    Get PDF
    Long-term care for older adults is in transition. Organizations offering long-term care for older adults are expected to provide person-centered care (PCC) in a complex context, with older adults aging in place and participating in society for as long as possible, staff shortages and the slow adoption of technological solutions. To address these challenges, these organizations increasingly use scientific knowledge to evaluate and innovate long-term care. This paper describes how co-creation, in the sense of close, intensive, and equivalent collaboration between science, care practice, and education, is a key factor in the success of improving long-term care for older adults. Such co-creation is central in the Academic Collaborative Center (ACC) Older Adults of Tilburg University. In this ACC, Tilburg University has joined forces with ten organizations that provide care for older adults and CZ zorgkantoor to create both scientific knowledge and societal impact in order to improve the quality of person-centered care for older adults. In the Netherlands, a “zorgkantoor” arranges long-term (residential) care on behalf of the national government. A zorgkantoor makes agreements on cost and quality with care providers and helps people that are in need of care to decide what the best possible option in their situation is. The CZ zorgkantoor arranges the long-term (residential) care in the south and southwest of the Netherlands. This paper describes how we create scientific knowledge to contribute to the knowledge base of PCC for older adults by conducting social scientific research in which the perspectives of older adults are central. Subsequently, we show how we create societal impact by facilitating and stimulating the use of our scientific knowledge in daily care practice. In the closing section, our ambitions for the future are discussed

    "Active surfaces" as Possible Functional Systems in Detection and Chemical (Bio) Reactivity

    Get PDF
    This article presents design strategies to demonstrate approaches to generate functionalized surfaces which have the potential for application in molecular systems; sensing and chemical reactivity applications are exemplified. Some applications are proven, while others are still under active investigation. Adaptation and extension of our strategies will lead to interfacing of different type of surfaces, specific interactions at a molecular level, and possible exchange of signals/cargoes between them. Optimization of the present approaches from each of five research groups within the NCCR will be directed towards expanding the types of functional surfaces and the properties that they exhibit

    Implementing Silicon Nanoribbon Field-Effect Transistors as Arrays for Multiple Ion Detection

    Get PDF
    Ionic gradients play a crucial role in the physiology of the human body, ranging from metabolism in cells to muscle contractions or brain activities. To monitor these ions, inexpensive, label-free chemical sensing devices are needed. Field-effect transistors (FETs) based on silicon (Si) nanowires or nanoribbons (NRs) have a great potential as future biochemical sensors as they allow for the integration in microscopic devices at low production costs. Integrating NRs in dense arrays on a single chip expands the field of applications to implantable electrodes or multifunctional chemical sensing platforms. Ideally, such a platform is capable of detecting numerous species in a complex analyte. Here, we demonstrate the basis for simultaneous sodium and fluoride ion detection with a single sensor chip consisting of arrays of gold-coated SiNR FETs. A microfluidic system with individual channels allows modifying the NR surfaces with self-assembled monolayers of two types of ion receptors sensitive to sodium and fluoride ions. The functionalization procedure results in a differential setup having active fluoride-and sodium-sensitive NRs together with bare gold control NRs on the same chip. Comparing functionalized NRs with control NRs allows the compensation of non-specific contributions from changes in the background electrolyte concentration and reveals the response to the targeted species

    Coherent Stranski-Krastanov growth in 1+1 dimensions with anharmonic interactions: An equilibrium study

    Get PDF
    The formation of coherently strained three-dimensional islands on top of the wetting layer in Stranski-Krastanov mode of growth is considered in a model in 1+1 dimensions accounting for the anharmonicity and non-convexity of the real interatomic forces. It is shown that coherent 3D islands can be expected to form in compressed rather than in expanded overlayers beyond a critical lattice misfit. In the latter case the classical Stranski-Krastanov growth is expected to occur because the misfit dislocations can become energetically favored at smaller island sizes. The thermodynamic reason for coherent 3D islanding is the incomplete wetting owing to the weaker adhesion of the edge atoms. Monolayer height islands with a critical size appear as necessary precursors of the 3D islands. The latter explains the experimentally observed narrow size distribution of the 3D islands. The 2D-3D transformation takes place by consecutive rearrangements of mono- to bilayer, bi- to trilayer islands, etc., after exceeding the corresponding critical sizes. The rearrangements are initiated by nucleation events each next one requiring to overcome a lower energetic barrier. The model is in good qualitative agreement with available experimental observations.Comment: 12 pages text, 15 figures, Accepted in Phys.Rev.B, Vol.61, No2

    Acquisition of pneumococci specific effector and regulatory Cd4+ T cells localising within human upper respiratory-tract mucosal lymphoid tissue

    Get PDF
    The upper respiratory tract mucosa is the location for commensal Streptococcus (S.) pneumoniae colonization and therefore represents a major site of contact between host and bacteria. The CD4(+) T cell response to pneumococcus is increasingly recognised as an important mediator of immunity that protects against invasive disease, with data suggesting a critical role for Th17 cells in mucosal clearance. By assessing CD4 T cell proliferative responses we demonstrate age-related sequestration of Th1 and Th17 CD4(+) T cells reactive to pneumococcal protein antigens within mucosal lymphoid tissue. CD25(hi) T cell depletion and utilisation of pneumococcal specific MHCII tetramers revealed the presence of antigen specific Tregs that utilised CTLA-4 and PDL-1 surface molecules to suppress these responses. The balance between mucosal effector and regulatory CD4(+) T cell immunity is likely to be critical to pneumococcal commensalism and the prevention of unwanted pathology associated with carriage. However, if dysregulated, such responses may render the host more susceptible to invasive pneumococcal infection and adversely affect the successful implementation of both polysaccharide-conjugate and novel protein-based pneumococcal vaccines

    An Integrated TCGA Pan-Cancer Clinical Data Resource to Drive High-Quality Survival Outcome Analytics

    Get PDF
    For a decade, The Cancer Genome Atlas (TCGA) program collected clinicopathologic annotation data along with multi-platform molecular profiles of more than 11,000 human tumors across 33 different cancer types. TCGA clinical data contain key features representing the democratized nature of the data collection process. To ensure proper use of this large clinical dataset associated with genomic features, we developed a standardized dataset named the TCGA Pan-Cancer Clinical Data Resource (TCGA-CDR), which includes four major clinical outcome endpoints. In addition to detailing major challenges and statistical limitations encountered during the effort of integrating the acquired clinical data, we present a summary that includes endpoint usage recommendations for each cancer type. These TCGA-CDR findings appear to be consistent with cancer genomics studies independent of the TCGA effort and provide opportunities for investigating cancer biology using clinical correlates at an unprecedented scale. Analysis of clinicopathologic annotations for over 11,000 cancer patients in the TCGA program leads to the generation of TCGA Clinical Data Resource, which provides recommendations of clinical outcome endpoint usage for 33 cancer types

    Proteomics Comparison of Cerebrospinal Fluid of Relapsing Remitting and Primary Progressive Multiple Sclerosis

    Get PDF
    Background: Based on clinical representation of disease symptoms multiple sclerosis (MScl) patients can be divided into two major subtypes; relapsing remitting (RR) MScl (85-90%) and primary progressive (PP) MScl (10-15%). Proteomics analysis of cerebrospinal fluid (CSF) has detected a number of proteins that were elevated in MScl patients. Here we specifically aimed to differentiate between the PP and RR subtypes of MScl by comparing CSF proteins. Methodology/Principal Findings: CSF samples (n = 31) were handled according to the same protocol for quantitative mass spectrometry measurements we reported previously. In the comparison of PP MScl versus RR MScl we observed a number of differentially abundant proteins, such as protein jagged-1 and vitamin D-binding protein. Protein jagged-1 was over three times less abundant in PP MScl compared to RR MScl. Vitamin D-binding protein was only detected in the RR MScl samples. These two proteins were validated by independent techniques (western blot and ELISA) as differentially abundant in the comparison between both MScl types. Conclusions/Significance: The main finding of this comparative study is the observation that the proteome profiles of CSF in PP and RR MScl patients overlap to a large extent. Still, a number of differences could be observed. Protein jagged-1 is a ligand for multiple Notch receptors and involved in the mediation of Notch signaling. It is suggested in literature that the Notch pathway is involved in the remyelination of MScl lesions. Aberration of normal homeostasis of Vitamin D, of which approximately 90% is bound to vitamin D-binding protein, has been widely implicated in MScl for some years now. Vitamin D directly and indirectly regulates the differentiation, activation of CD4+ T-lymphocytes and can prevent the development of autoimmune processes, and so it may be involved in neuroprotective elements in MScl
    • …
    corecore